Skip to main content
Log in

Spatiotemporal variations of cloud amount over the Yangtze River Delta, China

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Based on the NOAA’s Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres Extended (PATMOS-x) monthly mean cloud amount data, variations of annual and seasonal mean cloud amount over the Yangtze River Delta (YRD), China were examined for the period 1982–2006 by using a linear regression analysis. Both total and high-level cloud amounts peak in June and reach minimum in December, mid-level clouds have a peak during winter months and reach a minimum in summer, and low-level clouds vary weakly throughout the year with a weak maximum from August to October. For the annual mean cloud amount, a slightly decreasing tendency (−0.6% sky cover per decade) of total cloud amount is observed during the studying period, which is mainly due to the reduction of annual mean high-level cloud amount (−2.2% sky cover per decade). Mid-level clouds occur least (approximately 15% sky cover) and remain invariant, while the low-level cloud amount shows a significant increase during spring (1.5% sky cover per decade) and summer (3.0% sky cover per decade). Further analysis has revealed that the increased low-level clouds during the summer season are mainly impacted by the local environment. For example, compared to the low-level cloud amounts over the adjacent rural areas (e.g., cropland, large water body, and mountain areas covered by forest), those over and around urban agglomerations rise more dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, A. S., O. B. Toon, D. E. Stevens, et al., 2000: Reduction of tropical cloudiness by soot. Science, 288, 1042–1047, doi: 10.1126/science.288.5468.1042.

    Article  Google Scholar 

  • Chen, L. X., W. L. Li, W. Q. Zhu, et al., 2006: Seasonal trends of climate change in the Yangtze Delta and its adjacent regions and their formation mechanisms. Meteor. Atmos. Phys., 92, 11–23, doi: 10.1007/s00703-004-0102-y.

    Article  Google Scholar 

  • Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive lowlevel cloud feedback. Science, 325, 460–464, doi: 10.1126/science.1171255.

    Article  Google Scholar 

  • Cotton, W. R., and R. A. Pielke, 2007: Human Impacts on Weather and Climate. Cambridge University Press, New York, 330 pp.

    Book  Google Scholar 

  • Dong, X., B. Xi, K. Crosby, et al., 2010: A 10 year climatology of arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res., 115(D17), D12124, doi: 10.1029/2009JD013489.

    Google Scholar 

  • Du, Y., Z. Q. Xie, Y. Zeng, et al., 2007: Impact of urban expansion on regional temperature change in the Yangtze River Delta. Journal of Geographical Sciences, 17, 387–398, doi: 10.1007/s11442-007-0387-0.

    Article  Google Scholar 

  • Endo, N., and T. Yasunari, 2006: Changes in low cloudiness over China between 1971 and 1996. J. Climate, 19, 1204–1213, doi: 10.1175/JCLI3679.1.

    Article  Google Scholar 

  • Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteor., 43, 1038–1056, doi: 10.1175/1520-0450 (2004)043〈1038%3AQPSDTA〉2.0.CO%3B2.

    Article  Google Scholar 

  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 1100–1116, doi: 10.1175/2008JAMC1882.1.

    Article  Google Scholar 

  • Kaiser, D. P., 1998: Analysis of total cloud amount over China, 1951–1994. Geophys. Res. Lett., 25, 3599–3602, doi: 10.1029/98GL52784.

    Article  Google Scholar 

  • —, 2000: Decreasing cloudiness over China: An updated analysis examining additional variables. Geophys. Res. Lett., 27, 2193–2196, doi: 10.1029/2000 GL011358.

    Article  Google Scholar 

  • Kennedy, A. D., X. Q. Dong, B. K. Xi, et al., 2010: Evaluation of the NASA GISS Single-Column Model simulated clouds using combined surface and satellite observations. J. Climate, 23, 5175–5192, doi: 10.1175/2010JCLI3353.1.

    Article  Google Scholar 

  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 1721–1748, doi: 10.1175/2007JAS2515.1.

    Article  Google Scholar 

  • Li, Y., R. Yu, Y. Xu, et al., 2004: Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations. J. Meteor. Soc. Japan, 82, 761–773, doi: 10.2151/jmsj.2004.761.

    Article  Google Scholar 

  • Li Qiang, Zhou Suoquan, Xiang Liang, et al., 2009: The analysis on temporal-spatial characters of urban agglomeration island effect in Hangzhou Bay. Bulletin of Science and Technology, 25, 395–418. (in Chinese)

    Google Scholar 

  • Liang, F., and X. A. Xia, 2005: Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000. Ann. Geophys., 23, 2425–2432, doi: 10.5194/angeo-23-2425-2005.

    Article  Google Scholar 

  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, 11-1–11-4, doi: 10.1029/2001GL014357.

    Article  Google Scholar 

  • Nieman, S. J., J. Schmetz, and W. P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32, 1559–1568, doi: 10.1175/1520-0450(1993)032〈1559:ACOSTT〉2.0.CO;2.

    Article  Google Scholar 

  • Pavolonis, M. J., and A. K. Heidinger, 2004: Daytime cloud overlap detection from AVHRR and VIIRS. J. Appl. Meteor., 43, 762–778, doi: 10.1175/2099.1.

    Article  Google Scholar 

  • —, —, and T. Uttal, 2005: Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. J. Appl. Meteor., 44, 805–826, doi: 10.1175/JAM2236.1.

    Article  Google Scholar 

  • Qian, Y., D. P. Kaiser, L. R. Leung, et al., 2006: More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett., 33, L01812, doi: 10.1029/2005GL024586.

    Google Scholar 

  • Qiu Xinfa, Gu Lihua, Zeng Yan, et al., 2008: Study on urban heat island effect of Nanjing. Climatic Environ. Res., 13, 807–814. (in Chinese)

    Google Scholar 

  • Randall, D. A., and S. Tjemkes, 1991: Clouds, the earth’s radiation budget, and the hydrologic-cycle. Global and Planetary Change, 90, 3–9, doi: 10.1016/0921-8181 (91)900633.

    Article  Google Scholar 

  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108, doi: 10.1029/1999GL006066.

    Article  Google Scholar 

  • —, 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796, doi: 10.1126/science.287.5459.1793.

    Article  Google Scholar 

  • Rossow, B. R., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287, doi: 10.1175/1520-0477(1999)080〈2261:AIUCFI〉2.0.CO;2.

    Article  Google Scholar 

  • Small, J. D., J. H. Jiang, H. Su, et al., 2011: Relationship between aerosol and cloud fraction over Australia. Geophys. Res. Lett., 38, L23802, doi: 10.1029/2011GL049404.

    Article  Google Scholar 

  • Tang, Q. H., G. Y. Leng, and P. Y. Groisman, 2012: European hot summers associated with a reduction of cloudiness. J. Climate, 25, 3637–2644, doi: 10.1175/JCLI-D-12-00040.1.

    Article  Google Scholar 

  • Teller, A., and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6, 67–80, doi: 10.5194/acp-6-67-2006.

    Article  Google Scholar 

  • Thomas, S. M., A. K. Heidinger, and M. J. Pavolonis, 2004: Comparison of NOAA’s operational AVHRRderived cloud amount to other satellite-derived cloud climatologies. J. Climate, 17, 4805–4822, doi: 10.1175/JCLI-3242.1.

    Article  Google Scholar 

  • Tiao, G. C., G. C. Reinsel, D. M. Xu, et al., 1990: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation. J. Geophys. Res., 95(D12), 20507–20517.

    Article  Google Scholar 

  • Warren, S. G., R. M. Eastman, and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J. Climate, 20, 717–738, doi: 10.1175/JCLI4031.1.

    Article  Google Scholar 

  • Weatherhead, E. C., G. C. Reinsel, G. C. Tiao, et al., 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res., 103(D14), 17149–17161.

    Article  Google Scholar 

  • Xi, B., X. Dong, P. Minnis, et al., 2010: A 10 year climatology of cloud cover and vertical distribution derived from both surface and GOES observations over the DOE ARM SGP Site. J. Geophys. Res., 115(D12), D12124, doi: 10.1029/2009JD012800.

    Article  Google Scholar 

  • Yuan Changhong and Tang Jianping, 2007: Regional climatic response of Jiangsu to global warming. Journal of Nanjing University (Natural Sciences), 43, 655–669. (in Chinese)

    Google Scholar 

  • Zhang, K. X., R. Wang, C. C. Shen, et al., 2010: Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environ. Monit. Assess., 169, 101–112, doi: 10.1007/s10661-009-1154-8.

    Article  Google Scholar 

  • Zhang, N., Z. Q. Gao, X. M. Wang, et al., 2010: Modeling the impact of urban ization on the local and regional climate in Yangtze River Delta, China. Theor. Appl. Climatol., 102, 331–342, doi: 10.1007/s00704-010-0263-1.

    Article  Google Scholar 

  • Zhang, Y. L., B. Q. Qin, and W. M. Chen, 2004: Analysis of 40 year records of solar radiation data in Shanghai, Nanjing and Hangzhou in eastern China. Theor. Appl. Climatol., 78, 217–227, doi: 10.1007/s00704-003-0030-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang  (张 宁).

Additional information

Supported by the National Basic Research and Development (973) Program of China (2010CB428501) and National Natural Science Foundation of China (41375014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Zhang, N. & Sun, J. Spatiotemporal variations of cloud amount over the Yangtze River Delta, China. J Meteorol Res 28, 371–380 (2014). https://doi.org/10.1007/s13351-014-3064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3064-0

Key words

Navigation