Skip to main content
Log in

Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This study validates a method for discriminating between daytime clouds and dust aerosol layers over the Sahara Desert that uses a combination of active CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) and passive IIR (Infrared Imaging Radiometer) measurements; hereafter, the CLIM method. The CLIM method reduces misclassification of dense dust aerosol layers in the Sahara region relative to other techniques. When evaluated against a suite of simultaneous measurements from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), CloudSat, and the MODIS (Moderate-resolution Imaging Spectroradiometer), the misclassification rate for dust using the CLIM technique is 1.16% during boreal spring 2007. This rate is lower than the misclassification rates for dust using the cloud aerosol discriminations performed for version 2 (V2-CAD; 16.39%) or version 3 (V3-CAD; 2.01%) of the CALIPSO data processing algorithm. The total identification errors for data from in spring 2007 are 13.46% for V2-CAD, 3.39% for V3-CAD, and 1.99% for CLIM. These results indicate that CLIM and V3-CAD are both significantly better than V2-CAD for discriminating between clouds and dust aerosol layers. Misclassifications by CLIM in this region are mainly limited to mixed cloud-dust aerosol layers. V3-CAD sometimes misidentifies low-level aerosol layers adjacent to the surface as thin clouds, and sometimes fails to detect thin clouds entirely. The CLIM method is both simple and fast, and may be useful as a reference for testing or validating other discrimination techniques and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, S. A., 1997: Remote sensing aerosols using satellite infrared observations. J. Geophys. Res., 102(D14), 17069–17079.

    Article  Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Charlson, R. J., S. E. Schwartz, J. M. Hales, et al., 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430.

    Article  Google Scholar 

  • Chen, B., J. P. Huang, P. Minnis, et al., 2010: Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241–4251.

    Article  Google Scholar 

  • Chen Yonghang, Mao Xiaoqin, Huang Jianping, et al., 2009: Vertical distribution characteristics of aerosol during a long-distance transport of heavy dust pollution. China Environ. Sci., 29, 449, E. (in Chinese)

    Google Scholar 

  • Colarco, P. R., O. B. Toon, J. S. Reid, et al., 2003: Saharan dust transport to the Caribbean during PRIDE. 2: Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations. J. Geophys. Res., 108(D19), 8590, doi: 10.1029/2002JD002659.

    Article  Google Scholar 

  • Engelstaedter, S., I. Tegen, and R. Washington, 2006: North African dust emission and transport. Earth-Sci. Rev., 79, 73–100.

    Article  Google Scholar 

  • Ganor, E., and Y. Mamane, 1982: Transport of Saharan dust across the eastern Mediterranean. Atmos. Environ., 16, 581–587.

    Article  Google Scholar 

  • Ge, J. M., J. P. Huang, F. Weng, et al., 2008: Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan Desert. Atmos. Chem. Phys., 8, 4903–4909.

    Article  Google Scholar 

  • Goudie, A. S., and M. J. Middleton, 2001: Saharan dust storms, nature and consequences. Earth-Sci. Rev., 56, 179–204.

    Article  Google Scholar 

  • Hostetler, C. A., Z. Y. Liu, J. Reagan, et al., 2006: CALIOP algorithm theoretical basis document. Part 1: Calibration and level 1 data products. PCSCI-201, Release 1.0, NASA Langley Research Center, Hampton, 66 pp.

    Google Scholar 

  • Hsu, N. C., S. C. Tsay, M. D. King, et al., 2004: Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42, 557–569.

    Article  Google Scholar 

  • —, M. D. King, J. R. Herman, et al., 2006: Deep blue retrievals of Asian aerosol properties during ACEAsia. IEEE Trans. Geosci. Remote Sens., 44, 3180–3195.

    Article  Google Scholar 

  • Hu, Y. X., D. M. Winker, M. Vaughan, et al., 2007a: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 2293–2309.

    Article  Google Scholar 

  • —, M. Vaughan, Z. Y. Liu, et al., 2007b: The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Express, 15, 5327–5332.

    Article  Google Scholar 

  • —, —, C. McClain, et al., 2007c: Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements. Atmos. Chem. Phys., 7, 3353–3359.

    Article  Google Scholar 

  • —, S. Rodier, K. M. Xu, et al., 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115(D4), D00H34, doi: 10.1029/2009JD012384.

    Google Scholar 

  • Huang, J. P., B. Lin, P. Minnis, et al., 2006a: Satellitebased assessment of possible dust aerosols semidirect effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, doi: 10.1029/2006GL026561.

    Article  Google Scholar 

  • —, P. Minnis, B. Lin, et al., 2006b: Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.

    Google Scholar 

  • —, —, Y. H. Yi, et al., 2007a: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, doi: 10.1029/2007GL029938.

    Article  Google Scholar 

  • —, J. M. Ge, F. Weng, et al., 2007b: Detection of Asian dust storms using multisensor satellite measurements. Remote Sens. Environ., 110, 186–191.

    Article  Google Scholar 

  • —, P. Minnis, B. Chen, et al., 2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113(D23), D23212, doi: 10.1029/2008JD010620.

    Article  Google Scholar 

  • —, Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021.

    Article  Google Scholar 

  • —, P. Minnis, H. R. Yan, et al., 2010: Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos. Chem. Phys., 10(14), 6863–6872.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon et al., Eds., Cambridge University Press, 996 pp.

  • Kaufman, Y. J., D. Tanré, O. Dubovik, et al., 2001: Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophys. Res. Lett., 28, 1479–1482.

    Article  Google Scholar 

  • Legrand, M., A. Plana-Fattori, and C. N’doumé, 2001: Satellite detection of dust using the IR imagery of Meteosat. 1: Infrared difference dust index. J. Geophys. Res., 106(D16), 18251–18274, doi: 10.1029/2000JD900749.

    Article  Google Scholar 

  • Liu, D., Z. E. Wang, Z. Y. Liu, et al., 2008: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res., 113(D16), D16214, doi: 10.1029/2007JD009776.

    Article  Google Scholar 

  • Liu, Z. Y., M. Vaughan, D. M. Winker, et al., 2004: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data. J. Geophys. Res., 109(D15), D15202, doi: 10.1029/2004JD004732.

    Article  Google Scholar 

  • —, M. Vaughan, D. M. Winker, et al., 2009: The CALIPSO lidar cloud and aerosoldiscrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26, 1198–1213.

    Article  Google Scholar 

  • —, R. Kuehn, M. Vaughan, et al., 2010: The CALIPSO Cloud and Aerosol Discrimination: Version 3 Algorithm and Test Results. 25th International Laser Radar Conference (ILRC), Russia Petersburg St, 5–9 July, V. E. Zuev Institute of Atmospheric Optics SB RAS and Laser systems Ltd, JP 1. 32, 1–7.

    Google Scholar 

  • Ma, Y. Y., W. Gong, P. C. Wang, et al., 2011: New dust aerosol identification method for spacebornelidar measurements. J. Quant. Spectrosc. Radiat. Transfer, 112, 338–345.

    Article  Google Scholar 

  • Middleton, N. J., and A. S. Goudie, 2001: Saharan dust: Sources and trajectories. Trans. Inst. Br. Geogr., 26, 165–181.

    Article  Google Scholar 

  • Mika, S., G. Rätsch, J. Weston, et al., 1999: Fisher discriminant analysis with kernels. IEEE Neural Networks Signal Proc., 9, 41–48.

    Google Scholar 

  • Miller, R. L., I. Tegen, and J. Perlwitz, 2004: Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res., 109(D4), D04203, doi: 10.1029/2003JD004085.

    Google Scholar 

  • Moulin, C., C. E. Lambert, U. Dayan, et al., 1998: Satellite climatology of African dust transport in the Mediterranean atmosphere. J. Geophys. Res., 103(D11), 13137–13144.

    Article  Google Scholar 

  • Prospero, J. M., 1996: Saharan dust transport over the North Atlantic Ocean and Mediterranean: An Overview. The Impact of Desert Dust from Northern Africa across the Mediterranean. Kluwer Academic Publishers, The Netherlands, 133–151.

    Chapter  Google Scholar 

  • —, and T. N. Carlson, 1972: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic ocean. J. Geophys. Res., 77, 5255–5265.

    Article  Google Scholar 

  • —, P. Ginoux, O. Torres, et al., 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, doi: 10.1029/2000RG000095.

    Article  Google Scholar 

  • Stephens, G. L., D. G. Vane, R. J. Boain, et al., 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771–1790.

    Article  Google Scholar 

  • Tegen, I., and A. A. Lacis, 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101(D14), 19237–19244.

    Article  Google Scholar 

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152.

    Article  Google Scholar 

  • Vaughan, M., S. Young, D. M. Winker, et al., 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Proc. SPIE, 5575, 16–30.

    Article  Google Scholar 

  • Wang Xin, Huang Jianping, Ji Mingxia, et al., 2008: Variability of East Asian dust events and their longterm trend. Atmos. Environ., 42, 3156–3165.

    Article  Google Scholar 

  • Winker, D. M., J. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Space borne lidar for observation of aerosols and clouds. Proc. SPIE, 4893, 1–11.

    Article  Google Scholar 

  • —, —, and —, 2006: Initial results from CALIPSO. 23rd International Laser Radar Conference (ILRC23), Metropolitan Univ., Tokyo, Japan, 24–28 July, NASA Langley Research Center, 991–994.

    Google Scholar 

  • —, W. Hunt, and M. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi: 10.1029/2007GL030135.

    Article  Google Scholar 

  • Zhang, P., N. M. Lu, X. Q. Hu, et al., 2006: Identification and physical retrieval of dust storm using three MODIS thermal IR channels. Global Planet. Change, 52, 197–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Huang  (黄建平).

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2012CB955301), Fundamental Research Funds for the Central Universities (LZUJBKY-2013-104 and LZUJBKY-2009-k03), Development Program of Changjiang Scholarship and Research Team (IRT1018), and China Meteorological Administration Special Public Welfare Research Fund (GYHY201206009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, B. & Huang, J. Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements. J Meteorol Res 28, 185–198 (2014). https://doi.org/10.1007/s13351-014-3051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3051-5

Key words

Navigation