Skip to main content
Log in

Spatial and temporal variations of atmospheric angular momentum and its relation to the earth length of day

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The characteristics of atmospheric-angular-momentum (AAM) and length-of-day (LOD) on different timescales are investigated in this paper, on the basis of the NECP/NCAR reanalysis data and an LOD dataset for 1962–2010. The variation and overall trend of the AAM anomaly (AAMA) at different latitudes are presented, and the relationship between AAMA and LOD is discussed. The AAMAs in different latitude regions exhibit different patterns of variation, and the AAMA in the tropics makes a dominant contribution to the global AAMA. In the tropics, the AAMA propagates poleward to the extratropical regions. It is confirmed that a downward propagation of the AAMA occurs in the lower stratosphere. Correlation analysis shows that the relationship between AAMA and LOD varies significantly on different timescales. Specifically, the tropical AAMA is positively correlated with LOD on short timescales, but they are not obviously correlated on long timescales. This indicates that the interaction between AAM and the earth’s angular momentum follows the conservative restriction on short timescales, but the influence of the earth angular momentum on that of the atmosphere depends on the interaction process on long timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarca, D. R., 1999: The influence of global warming on earth rotation speed. Ann. Geophys., 17, 806–811.

    Article  Google Scholar 

  • —, D. Gambis, and D. A. Salstein, 2000: Interannual signals in length of day and atmospheric angular momentum. Ann. Geophys., 18, 347–364.

    Article  Google Scholar 

  • —, —, and —, 2012: Interdecadal oscillations in atmospheric angular momentum variation. J. Geo. Sci., 2(1), 42–52.

    Google Scholar 

  • Baldwin, M. P., L. J. Gray, T. J. Dunkerton, et al., 2001: The quasi-biennial oscillation. Rev. Geophys., 39(2), 179–229.

    Article  Google Scholar 

  • Chen, G., B. M. Shao, Y. Han, et al., 2010: Modality of semiannual to multidecadal oscillations in global sea surface temperature variability. J. Geophys. Res., 115, C03005.

    Google Scholar 

  • de Viron, O., R. M. Ponte, and V. Dehant, 2001: Indirect effect of the atmosphere through the oceans on the earth nutation using the torque approach. J. Geophys. Res., 106(B5), 8841–8851.

    Article  Google Scholar 

  • Dickey, J. O., S. L. Marcus, and R. Hide, 1992: Global propagation of interannual fluctuations in atmospheric angular momentum. Nature, 357, 484–488.

    Article  Google Scholar 

  • Egger, J., K. P. Hoinka, K. Weickmann, et al., 2003: Angular momentum budgets based on NCEP and ECMWF reanalysis data: An intercomparison. Mon. Wea. Rev., 131, 2577–2585.

    Article  Google Scholar 

  • Hide, R., and J. O. Dickey, 1991: Earth’s variable rotation. Science, 253, 629–637.

    Article  Google Scholar 

  • IERS (International Earth Rotation Service), 1998: Annual Report. Observatoire de Paris.

    Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NMC/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kang, I. S., and K. M. Lau, 1994: Principal modes of atmospheric circulation anomalies associated with global angular momentum fluctuations. J. Atmos. Sci., 51, 1194–1205.

    Article  Google Scholar 

  • Langley, R. B., R. W. King, I. I. Shapiro, et al., 1981: Salstein, atmospheric angular momentum and the length of day: A common fluctuation with a period near 50 days. Nature, 294, 730–732.

    Article  Google Scholar 

  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 33, 245–259.

    Article  Google Scholar 

  • Manzini, E., C. Cagnazzo, P. G. Fogli, et al., 2012: Stratosphere-troposphere coupling on interdecadal timescales: Implications for the North Atlantic Ocean. Geophys. Res. Lett., 39, L05801.

    Article  Google Scholar 

  • Marcus, S. L., O. de Viron, and J. O. Dickey, 2011: Abrupt atmospheric torque changes and their role in the 1976–1977 climate regime shift. J. Geophys. Res., 116, D03107.

    Google Scholar 

  • Marshall, J., and R. A. Plumb, 2008: Atmosphere, ocean and climate dynamics: An introductory text. International Geophysics Series, 93, Academic Press, New York, London, 344 pp.

    Google Scholar 

  • Paek, H., and H. P. Huang, 2012a: A comparison of the interannual variability in atmospheric angular momentum and length-of-day using multiple reanalysis datasets. J. Geophys. Res., 117, D20102.

    Google Scholar 

  • —, and —, 2012b: A comparison of decadal-tointerdecadal variability and trend in reanalysis datasets using atmospheric angular momentum. J. Climate, 25, 4750–4758.

    Article  Google Scholar 

  • Palmen, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, New York, 594 pp.

    Google Scholar 

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, New York, USA, 520 pp.

    Google Scholar 

  • Qian Weihong and Chou Jifan, 1996: Atmosphere-earth angular momentum exchange and ENSO cycle. Sci. China (Ser. D), 39(2), 215–224.

    Google Scholar 

  • Rosen, R. D., and D. A. Salstein, 1983: Variations in atmospheric angular momentum on global and regional scales and the length of day. J. Geophys. Res., 88, 5451–5470.

    Article  Google Scholar 

  • —, —, T. M. Eubanks, et al., 1984: An El Niño signal in atmospheric angular momentum and earth rotation. Science, 225, 411–414.

    Article  Google Scholar 

  • —, —, and T. Nehrkorn, 1991: Predictions of zonal wind and angular momentum by the NMC mediumrange forecast model during 1985–1989. Mon. Wea. Rev., 119, 208–217.

    Article  Google Scholar 

  • —, and —, 2000: Multidecadal signals in the interannual variability of atmospheric angular momentum. Climate Dyn., 6, 693–700.

    Article  Google Scholar 

  • Seidel, D. J., Q. Fu, W. J. Randel, et al., 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 21–24.

    Google Scholar 

  • Wang Yafei, Wei Dong, and Li Yan, 2011: Relationship between variability of the regional AAM torque and synoptic-scale system over East Asia in May and June 1998. Plateau Meteorology, 30(5), 1189–1194.

    Google Scholar 

  • Weickmann, K. M., and P. D. Sardeshmukh, 1994: The atmospheric angular momentum cycle associated with Madden-Julian oscillation. J. Atmos. Sci., 51(21), 3194–3208.

    Article  Google Scholar 

  • —, G. N. Kiladis, and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54, 1445–1461.

    Article  Google Scholar 

  • Winkelnkemper, T., F. Seitz, S. K. Min., et al., 2008: Simulation of historic and future atmospheric angular momentum effects on length-of-day variations with GCMs. International Association of Geodesy Symposia: Observing our Changing Earth. M. G. Sideris, Ed., Springer Berlin, Heidelberg, 133, 447–454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziniu Xiao  (肖子牛).

Additional information

Supported by the National Basic Research and Development (973) Program of China (2012CB957804) and National Natural Science Foundation of China (41375069 and 41175051).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Shi, W., Xiao, Z. et al. Spatial and temporal variations of atmospheric angular momentum and its relation to the earth length of day. Acta Meteorol Sin 28, 150–161 (2014). https://doi.org/10.1007/s13351-014-3028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-3028-4

Key words

Navigation