Skip to main content
Log in

Evaluation of the ocean feedback on height characteristics of the tropical cyclone boundary layer

  • Articles
  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

In this study, the interaction between the tropical cyclone (TC) and the underlying ocean is reproduced by using a coupled atmosphere-ocean model. Based on the simulation results, characteristics of the TC boundary layer depth are investigated in terms of three commonly used definitions, i.e., the height of the mixed layer depth (HVTH), the height of the maximum tangential winds (HTAN), and the inflow layer depth (HRAD). The symmetric height of the boundary layer is shown to be cut down by the ocean response, with the decrease of HVTH slightly smaller than that of HTAN and HRAD. The ocean feedback also leads to evident changes in asymmetric features of the boundary layer depth. The HVTH in the right rear of the TC is significantly diminished due to presence of the cold wake, while the changes of HVTH in other regions are rather small. The decreased surface virtual potential temperature by the cold wake is identified to be dominant in the asymmetric changes in HVTH. The impacts of ocean response on the asymmetric distributions of HTAN are nonetheless not distinct, which is attributed to the highly axisymmetric property of tangential winds. The HRAD possesses remarkable asymmetric features and the inflow layer does not exist in all regions, an indication of the inadequacy of the definition based on symmetric inflow layer depth. Under influences of the cold wake, the peak inflow area rotates counterclockwise distinctly. As a consequence, the HRAD becomes deeper in the east while shallower in the west of the TC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., and S. W. Chang, 1978: Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35, 1240–1255.

    Article  Google Scholar 

  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917–946.

    Article  Google Scholar 

  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic airmass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709.

    Google Scholar 

  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 1770–1789.

    Article  Google Scholar 

  • Chen, S., T. J. Campbell, H. Jin, et al., 2010: Effect of two-way air-sea coupling in high and low wind speed regimes. Mon. Wea. Rev., 138, 3579–3602.

    Article  Google Scholar 

  • Duan, Y. H., R. S. Wu, R. L. Yu, et al., 2013: Numerical simulation of tropical cyclone intensity change with a coupled air-sea model. Acta Meteor. Sinica, 27, doi: 10.1007/s13351-013-0503-2. (in press)

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.

    Article  Google Scholar 

  • —, 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.

    Article  Google Scholar 

  • —, 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976.

    Article  Google Scholar 

  • Hogsett, W., and D.-L. Zhang, 2009: Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66, 2678–2696.

    Article  Google Scholar 

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed, Elsevier Academic Press, Burlington, 529 pp.

    Google Scholar 

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • Jordan, C. L., 1958: Mean soundings for the west indies area. J. Meteor., 15, 91–97.

    Article  Google Scholar 

  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 2469–2484.

    Article  Google Scholar 

  • —, 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 2169–2193.

    Article  Google Scholar 

  • —, 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 2194–2211.

    Article  Google Scholar 

  • —, 2010a: Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136, 1686–1699, doi: 10.002/qj.667.

    Article  Google Scholar 

  • —, 2010b: Slab- and height-resolving models of the tropical cyclone boundary layer. Part II: Why the simulations differ. Quart. J. Roy. Meteor. Soc., 136, 1700–1711, doi: 10.002/qj.685.

    Article  Google Scholar 

  • —, and Y. Q. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 2485–2501.

    Article  Google Scholar 

  • Liu, B., H. Q. Liu, L. Xie, et al., 2011a: A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139, 132–152.

    Article  Google Scholar 

  • Liu Lei, Fei Jianfang, Lin Xiaopei, et al., 2011b: Study of the air-sea interaction during Typhoon Kaemi (2006). Acta Meteor. Sinica, 25, 625–638.

    Article  Google Scholar 

  • Ma, Z. H., J. F. Fei, L. Liu, et al., 2013a: Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air-sea interaction conditions. Mon. Wea. Rev., 141, 1285–1303.

    Article  Google Scholar 

  • —, —, X. G. Huang, et al., 2013b: The effects of ocean feedback on tropical cyclone energetics under idealized air-sea interaction conditions. J. Geophys. Res., doi: 10.1002/jgrd.50780. (in press)

    Google Scholar 

  • Mellor, G. L., 2004: Users guide for a three-dimensional, primitive equation, numerical ocean model (June 2004 version). Prog. in Atmos. and Ocean. Sci., Princeton University, 56 pp.

    Google Scholar 

  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 3651–3674.

    Article  Google Scholar 

  • —, D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 3675–3698.

    Article  Google Scholar 

  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci., 56, 642–651.

    Article  Google Scholar 

  • Schneider, R., and G. M. Barnes, 2005: Low-level kinematic, thermodynamic, and reflectivity fields associated with Hurricane Bonnie (1998) at landfall. Mon. Wea. Rev., 133, 3243–3259.

    Article  Google Scholar 

  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 1984–1998.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

    Google Scholar 

  • Smith, R. K., and M. T. Montgomery, 2008: Balanced boundary layers used in hurricane models. Quart. J. Roy. Meteor. Soc., 134, 1385–1395.

    Article  Google Scholar 

  • —, and —, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 1665–1670, doi: 10.1002/qj.679.

    Article  Google Scholar 

  • —, —, and N. Van Sang, 2009: Tropical cyclone spinup revisited. Quart. J. Roy. Meteor. Soc., 135, 1321–1335.

    Article  Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

    Book  Google Scholar 

  • Wu, L. G., B. Wang, and S. A. Braun, 2005: Impact of air-sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133, 3299–3314.

    Article  Google Scholar 

  • Zhang, J. A., W. M. Drennan, P. G. Black, et al., 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 2455–2467.

    Article  Google Scholar 

  • —, R. F. Rogers, D. S. Nolan, et al., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 2523–2535.

    Article  Google Scholar 

  • Zhu, H. Y., W. Ulrich, and R. K. Smith, 2004: Ocean effects on tropical cyclone intensification and innercore asymmetries. J. Atmos. Sci., 61, 1245–1258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfang Fei  (费建芳).

Additional information

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201106004) and National Natural Science Foundation of China (41230421, 41005029, and 41105065).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Fei, J., Huang, X. et al. Evaluation of the ocean feedback on height characteristics of the tropical cyclone boundary layer. Acta Meteorol Sin 27, 910–922 (2013). https://doi.org/10.1007/s13351-013-0611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0611-z

Key words

Navigation