Skip to main content
Log in

Atmospheric moisture distribution and transport over the Tibetan Plateau and the impacts of the South Asian summer monsoon

  • Articles
  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

In this study, by using the ECMWF ERA-Interim reanalysis data from 1979 to 2010, the spatial distribution and transport of total atmospheric moisture over the Tibetan Plateau (TP) are analyzed, together with the associated impacts of the South Asian summer monsoon (SASM). Acting as a moisture sink in summer, the TP has a net moisture flux of 2.59×107 kg s−1 during 1979–2010, with moisture supplies mainly from the southern boundary along the latitude belts over the Bay of Bengal and the Arabian Sea. The total atmospheric moisture over the TP exhibits significant differences in both spatial distribution and transport between the monsoon active and break periods and between strong and weak monsoon years. Large positive (negative) moisture anomalies occur over the southwest edge of the TP and the Arabian Sea, mainly due to transport of easterly (westerly) anomalies during the monsoon active (break) period. For the whole TP region, the total moisture supply is more strengthened than the climatological mean during the monsoon active period, which is mainly contributed by the transport of moisture from the south edge of the TP. During the monsoon break period, however, the total moisture supply to the TP is slightly weakened. In addition, the TP moisture sink is also strengthened (weakened) in the strong (weak) monsoon years, mainly attributed by the moisture transport in the west-east directions. Our results suggest that the SASM has exerted great impacts on the total atmospheric moisture and its transport over the TP through adjusting the moisture spatial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85–102.

    Article  Google Scholar 

  • Bao, Q., J. Yang, Y. M. Liu, et al., 2010: Roles of anomalous Tibetan Plateau warming on the severe 2008 winter storm in central-southern China. Mon. Wea. Rev., 138(6), 2375–2384.

    Article  Google Scholar 

  • Chen, B., Z. Y. Wang, and Y. Sun, 2008: Interdecadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidence. Int. J. Climatol., 28(9), 1139–1161, doi: 10.1002/joc.1615.

    Google Scholar 

  • —, X. D. Xu, S. Yang, et al., 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 110, 423–435, doi: 10.1007/s00704-012-06141-y.

    Article  Google Scholar 

  • Ding, Y. H., and D. R. Sikka, 2006: Synoptic systems and weather. The Asian Monsoon. B. Wang, Ed., Springer-Verlag, Berlin, Heidelberg, 131–201.

    Chapter  Google Scholar 

  • Dong, H. P., S. X. Zhao, and Q. C. Zeng, 2007: A study of influencing systems and moisture budget in a heavy rainfall in low latitude plateau in China during early summer. Adv. Atmos. Sci., 24(3), 485–502, doi: 10.1007/s00376-007-0485-z.

    Article  Google Scholar 

  • Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24(7–8), 793–807, doi: 10.1007/s00382-004-0488-8.

    Article  Google Scholar 

  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 1999: Global composite runoff fields based on observed river discharge and simulated water balances. Technical Report No. 22, Global Runoff Data Center, Koblenz, 115.

    Google Scholar 

  • —, —, —, 2000: UNH/GRDC composite runoff fields V1.0. Durham, NH: Complex Systems Research Center, University of New Hampshire, Koblenz, Germany: Global Runoff Data Center (GRDC). See http://www.grdc.sr.unh.edu/.

    Google Scholar 

  • —, and P. V. Joseph, 2003: On breaks of the Indian monsoon. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 112, 529–558.

    Google Scholar 

  • —, M. Rajeevan, and P. A. Francis, 2007: Monsoon variability: Links to major oscillations over the equatorial Pacific and Indian oceans. Curr. Sci., 93, 182–194.

    Google Scholar 

  • —, P. N. Vinayachandran, and P. A. Francis, 2003: Droughts of the Indian summer monsoon: Role of clouds over the Indian Ocean. Curr. Sci., 85, 1713–1719.

    Google Scholar 

  • —, —, —, et al., 2004: Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019733.

  • Gadgil, S., Y. P. Abrol, and P. R. S. Rao, 1999: On growth and fluctuation of Indian foodgrain production. Curr. Sci., 76, 548–556.

    Google Scholar 

  • —, and P. R. S. Rao, 2000: Farming strategies for a variable climate—A challenge. Curr. Sci., 78(10), 1203–1215.

    Google Scholar 

  • Gao Dengyi, Zou Han, and Wang Wei, 1985: Influences of Brahmaputra river water passage on the precipitation. Mountain Research, 3(4), 239–249. (in Chinese)

    Google Scholar 

  • Goswami, B. N., and R. S. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 1180–1198.

    Article  Google Scholar 

  • —, R. S. Ajayamohan, P. K. Xavier, et al., 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30(8), doi: 10.1029/2002GL016734.

    Google Scholar 

  • Hsu, H. H., C. T. Terng, and C. T. Chen, 1999: Evolution of large-scale circulation and heating during the first transition of Asian summer monsoon. J. Climate, 12, 793–810.

    Article  Google Scholar 

  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, 4366–4377.

    Article  Google Scholar 

  • —, and Zhou W., 2012: Quasi-4-yr coupling between El Niño-Southern Oscillation and water vapor transport over East Asia-WNP. J. Climate, 25, 5879–5891, doi: 10.1175/JCLI-D-11-00433.1.

    Article  Google Scholar 

  • —, Z. P. Wen, W. Zhou, et al., 2012: Atmospheric water vapor transport associated with two decadal rainfall shifts over East China. J. Meteor. Soc. Japan, 90, 587–602, doi: 10.2151/jmsj.2012-501.

    Article  Google Scholar 

  • Li, X. Z., Z. P. Wen, and W. Zhou, 2011: Long-term change in summer water vapor transport over South China in recent decades. J. Meteor. Soc. Japan, 89A, 271–282.

    Article  Google Scholar 

  • Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J. Climate, 9, 358–375.

    Article  Google Scholar 

  • Liu, Y. M., Q. Bao, A. M. Duan, et al., 2007: Recent progress in the impact of the Tibetan Plateau on climate in China. Adv. Atmos. Sci., 24(6), 1060–1076, doi: 10.1007/s00376-007-1060-3.

    Article  Google Scholar 

  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean region. Mon. Wea. Rev., 115, 27–50.

    Article  Google Scholar 

  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth System Sci., 119(3), 229–247.

    Article  Google Scholar 

  • Sajani, S., S. N. Beegum, and K. K. Moorthy, 2007: The role of low-frequency intraseasonal oscillations in the anomalous Indian summer monsoon rainfall of 2002. J. Earth Syst. Sci., 116(2), 149–157.

    Article  Google Scholar 

  • Sato, T., and F. Kimura, 2007: How does the Tibetan plateau affect the transition of Indian monsoon rainfall? Mon. Wea. Rev., 135, 2006–2015, doi: 10.1175/MWR3386.1.

    Article  Google Scholar 

  • Simmonds, I., D. H. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 1353–1367.

    Article  Google Scholar 

  • Tao Shiyan, Chen Longxun, Xu Xiangde, et al., 1999: Progresses of Theoretical Study in the Second Tibetan Plateau Atmosphere Scientific Experiment: Part I. China Meteorological Press, Beijing, 348 pp. (in Chinese)

    Google Scholar 

  • —, Q. Bao, B. Hoskins, et al., 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35(14), L14702, doi: 10.1029/2008gl034330.

    Article  Google Scholar 

  • Wang, B., R. G. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoons. J. Climate, 14, 4073–4090.

    Article  Google Scholar 

  • —, V. O. Magaña, T. N. Palmer, et al., 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14451–14510.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.

    Article  Google Scholar 

  • Wu, G. X., Y. M. Liu, H. Bian, et al., 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi: 10.1038/srep00404.36.

    Google Scholar 

  • —, X. Y. Shi, Y. Q. Wang, et al., 2008: Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River valley over China. Meteor. Atmos. Phys., 100(1–4), 217–231, doi: 10.1007/s00703-008-0305-8.

    Google Scholar 

  • Xu Xiangde, Tao Shiyan, Wang Jizhi, et al., 2002: The relationship between water vapor transport features of Tibetan Plateau-monsoon “large triangle” affecting region and drought-flood abnormality of China. Acta Meteor. Sinica, 60, 257–266. (in Chinese)

    Google Scholar 

  • Yao, T. D., H. Zhou, and X. X. Yang, 2009: Indian monsoon influences altitude effect of δ 18O in precipitation/river water on the Tibetan Plateau. Chinese Sci. Bull., 54, 2724–2731, doi: 10.1007/s11434-009-0497-4.

    Article  Google Scholar 

  • Ye Duzheng, and Gao Youxi, 1979: Meteorology of the Qinghai-Xizang Plateau. Chinese Science Press, Beijing, 278 pp. (in Chinese)

    Google Scholar 

  • Zhou Libo, Zou Han, Ma Shupo, et al., 2008: Study on inmpact of the South Asian summer monsoon on the down-valley wind on the north slope of Mt. Everest. Geophy. Res. Lett., 35, L14811, doi: 10.1029/2008GL034151.

    Article  Google Scholar 

  • —, —, —, et al., 2012: Observed impact of the South Asian summer monsoon on the local meteorology in the Himalayas. Acta Meteor. Sinica, 26(2), 205–215, doi: 10.1007/s13351-012-0206-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Zhou  (周立波).

Additional information

Supported by the National Basic Research and Development (973) program of China (2009CB421403), Public Science and Technology Research Funds for Projects of Ocean (201005017-5 and 201005017-7), China Meteorological Administration Special Public Welfare Research Fund (GYHY201206041), Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes and Polar Environment Comprehensive Investigation and Assessment (2012-2015).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Zhu, J., Zou, H. et al. Atmospheric moisture distribution and transport over the Tibetan Plateau and the impacts of the South Asian summer monsoon. Acta Meteorol Sin 27, 819–831 (2013). https://doi.org/10.1007/s13351-013-0603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0603-z

Key words

Navigation