Skip to main content
Log in

Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010)

  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

In this study, an approach combining dynamical initialization and large-scale spectral nudging is proposed to achieve improved numerical simulations of tropical cyclones (TCs), including track, structure, intensity, and their changes, based on the Advanced Weather Research and Forecasting (ARW-WRF) model. The effectiveness of the approach has been demonstrated with a case study of Typhoon Megi (2010). The ARW-WRF model with the proposed approach realistically reproduced many aspects of Typhoon Megi in a 7-day-long simulation. In particular, the model simulated quite well not only the storm track and intensity changes but also the structure changes before, during, and after its landfall over the Luzon Island in the northern Philippines, as well as after it reentered the ocean over the South China Sea (SCS). The results from several sensitivity experiments demonstrate that the proposed approach is quite effective and ideal for achieving realistic simulations of real TCs, and thus is useful for understanding the TC inner-core dynamics, and structure and intensity changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98(D12), 23245–23263.

    Article  Google Scholar 

  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130(6), 1573–1592.

    Article  Google Scholar 

  • —, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63(1), 43–64.

    Article  Google Scholar 

  • —, and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128(12), 3941–3961.

    Article  Google Scholar 

  • —, M. T. Montgomery, and Z. -X. Pu, 2006: Highresolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63(1), 19–42.

    Article  Google Scholar 

  • Cha, D. -H., C. -S. Jin, D. -K. Lee, et al., 2011: Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. J. Geophys. Res., 116, D10103, doi:10.1029/2010JD015069.

    Article  Google Scholar 

  • —, and Y. Q. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon. Wea. Rev., 141(3), 964–986.

    Article  Google Scholar 

  • Chou, K. -H., C. -C. Wu, Y. Wang, et al., 2011: Eyewall evolution of typhoons crossing the Philippines and Taiwan: An observational study. Terr. Atmos. Ocean. Sci., 22(6), 535–548.

    Article  Google Scholar 

  • Cram, T. A., J. Persing, M. T. Montgomery, et al., 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64(6), 1835–1856.

    Article  Google Scholar 

  • Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129(8), 1859–1881.

    Article  Google Scholar 

  • —, and S. Low-Nam, 2001: The NCAR-AFWA Tropical Cyclone Bogussing Scheme. Air Force Weather Agency (AFWA) Rep., 12 pp. [Available online at http://www.mmm.ucar.edu/mm5/mm5v3/tcbogus.html.]

    Google Scholar 

  • —, and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130(5), 1100–1124.

    Article  Google Scholar 

  • —, W. Wang, S. S. Chen, et al., 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136(6), 1990–2005.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46(20), 3077–3107.

    Article  Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    Article  Google Scholar 

  • Feser, F., and H. von Storch, 2008: A dynamical downscaling case study for typhoons in Southeast Asia using a regional climate model. Mon. Wea. Rev., 136(5), 1806–1815.

    Article  Google Scholar 

  • Goerss, J. S., and R. A. Jeffries, 1994: Assimilation of synthetic tropical cyclone observations into the Navy Operational Global Atmospheric Prediction System. Wea. Forecasting, 9(4), 557–576.

    Article  Google Scholar 

  • Hendricks, E. A., M. S. Peng, X. -Y. Ge, et al., 2011: Performance of a dynamic initialization scheme in the Coupled Ocean-Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26(5), 650–663.

    Article  Google Scholar 

  • Hogsett, W., and D. -L. Zhang, 2009: Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66(9), 2678–2696.

    Article  Google Scholar 

  • —, and —, 2010: Genesis of Typhoon Chanchu (2006) from a westerly wind burst associated with the MJO. Part I: Evolution of a vertically tilted precursor vortex. J. Atmos. Sci., 67(12), 3774–3792.

    Article  Google Scholar 

  • —, and —, 2011: Genesis of Typhoon Chanchu (2006) from a westerly wind burst associated with the MJO. Part II: Roles of deep convection in tropical transition. J. Atmos. Sci., 68(6), 1377–1396.

    Article  Google Scholar 

  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40(2), 328–342.

    Article  Google Scholar 

  • Hong, S. -Y., and J. -O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42(2), 129–151.

    Google Scholar 

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43(1), 170–181.

    Article  Google Scholar 

  • —, and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47(23), 2784–2802.

    Article  Google Scholar 

  • —, and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr. No. 24, Amer. Meteor. Soc., 165–170.

    Google Scholar 

  • Kida, H., T. Koide, H. Sasaki, et al., 1991: A new approach for coupling a limited area model to a GCM for regional climate simulations. J. Meteor. Soc. Japan, 69, 723–728.

    Google Scholar 

  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121(7), 2030–2045.

    Article  Google Scholar 

  • —, —, R. E. Tuleya, et al., 1995: Improvements in the GFDL Hurricane Prediction System. Mon. Wea. Rev., 123(9), 2791–2801.

    Article  Google Scholar 

  • Kwon, I. -H., and H. -B. Cheong, 2010: Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex. Mon. Wea. Rev., 138(4), 1344–1367.

    Article  Google Scholar 

  • Leslie, L. M., and G. J. Holland, 1995: On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56(1-2), 101–110.

    Article  Google Scholar 

  • Li, X. -L., and Z. -X. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136(12), 4819–4838.

    Article  Google Scholar 

  • Liu, B., and L. Xie, 2012: A scale-selective data assimilation approach to improving tropical cyclone track and intensity forecasts in a limited-area model: A case study of Hurricane Felix (2007). Wea. Forecasting, 27(1), 124–140.

    Article  Google Scholar 

  • Liu, Y. B., D. -L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125(12), 3073–3093.

    Article  Google Scholar 

  • —, —, and —, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127(11), 2597–2616.

    Article  Google Scholar 

  • Ma, S. -H., A. -X. Qu, and Y. Wang, 2007: The performance of the new tropical cyclone track prediction system of the China National Meteorological Center. Meteor. Atmos. Phys., 97(1–4), 29–39.

    Article  Google Scholar 

  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18(8), 1227–1246.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16663–16682.

    Article  Google Scholar 

  • Moon, I.-J., I. Ginis, T. Hara, et al., 2007: A physicsbased parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135(8), 2869–2878.

    Article  Google Scholar 

  • Musgrave, K. D., C. A. Davis, and M. T. Montgomery, 2008: Numerical simulations of the formation of Hurricane Gabrielle (2001). Mon. Wea. Rev., 136(8), 3151–3167.

    Article  Google Scholar 

  • Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada Level-3 model with condensation physics: Its design and verification. Boundary-Layer Meteor., 112(1), 1–31.

    Article  Google Scholar 

  • Peng, M. S., B. -F. Jeng, and C. -P. Chang, 1993: Forecast of typhoon motion in the vicinity of Taiwan during 1989–90 using a dynamical model. Wea. Forecasting, 8(3), 309–325.

    Article  Google Scholar 

  • Pu, Z. -X., and S. A. Braun, 2001: Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon. Wea. Rev., 129(8), 2023–2039.

    Article  Google Scholar 

  • Riette, S., and D. Caya, 2002: Sensitivity of short simulations to the various parameters in the new CRCM spectral nudging. Research Activities in Atmospheric and Oceanic Modelling, Ritchie H., Ed., WMO/TD-No 1105, Report No. 32, 7.39–7.40.

    Google Scholar 

  • Rogers, M. L. Black, S. S. Chen, et al., 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64(6), 1811–1834.

    Article  Google Scholar 

  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67(1), 44–70.

    Article  Google Scholar 

  • Tallapragada, V., Y. C. Kwon, Q. Liu, et al., 2012: Operational implementation of high-resolution triplynested HWRF at NCEP/EMC-A major step towards addressing intensity forecast problem. The 30th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., 15–20 April 2012, Ponte Vedra Beach, Florida.

    Google Scholar 

  • Ueno, M., 1989: Operational bogussing and numerical prediction of typhoon in JMA. JMA/NPD Tech. Rep., 28, 48 pp.

    Google Scholar 

  • van Nguyen, H., and Y. -L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139(5), 1463–1491.

    Article  Google Scholar 

  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128(10), 3664–3673.

    Article  Google Scholar 

  • Wang, Y. Q., 1998: On the bogussing of tropical cyclones in numerical models: The influence of vertical structure. Meteor. Atmos. Phys., 65(3–4), 153–170.

    Article  Google Scholar 

  • —, 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129(6), 1370–1394.

    Article  Google Scholar 

  • Wu, C. -C., K. -H. Chou, H. -J. Cheng, et al., 2003: Eyewall contraction, breakdown and reformation in a landfalling typhoon. Geophys. Res. Lett., 30(17), 1887, doi:10.1029/2003GL017653.

    Article  Google Scholar 

  • —, H. J. Cheng, Y. Q. Wang, et al., 2009: A numerical investigation of the eyewall evolution of a landfalling typhoon. Mon. Wea. Rev., 137(1), 21–40.

    Article  Google Scholar 

  • Yang, M. -J., D. -L. Zhang, and H. -L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65(10), 3095–3115.

    Article  Google Scholar 

  • —, —, X. -D. Tang, et al., 2011: A modeling study of Typhoon Nari (2001) at landfall. Part II: Structural changes and terrain-induced asymmetries. J. Geophys. Res., 116, D09112, doi:10.1029/2010JD015445.

    Article  Google Scholar 

  • Yau, M. K., Y. B. Liu, D. -L. Zhang, et al., 2004: A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132(6), 1410–1433.

    Article  Google Scholar 

  • Zhang, D. -L., Y. B. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically-induced vertical motion. Mon. Wea. Rev., 128(11), 3772–3788.

    Article  Google Scholar 

  • —, —, and —, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129(1), 92–107.

    Article  Google Scholar 

  • —, —, and —, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130(11), 2745–2763.

    Article  Google Scholar 

  • —, L. Tian, and M. J. Yang, 2011: Genesis of Typhoon Nari (2001) from a mesoscale convective system. J. Geophys. Res., 116, D23104, doi:10.1029/2011JD016640.

    Article  Google Scholar 

  • Zhang, Q. -H., S. -J. Chen, Y. -H. Kuo, et al., 2005: Numerical study of a typhoon with a large eye: Model simulation and verification. Mon. Wea. Rev., 133(4), 725–742.

    Article  Google Scholar 

  • Zhang, X. Y., Q. N. Xiao, and P. J. Fitzpatrick, 2007: The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon. Wea. Rev., 135(2), 526–548.

    Article  Google Scholar 

  • Zhu, T., D. -L. Zhang, and F. Z. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132(1), 225–241.

    Article  Google Scholar 

  • —, and —, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63(1), 109–126.

    Article  Google Scholar 

  • Zou, X. L., and Q. N. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57(6), 836–860.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Wang  (王玉清).

Additional information

Supported by the National Basic Research and Development (973) Program of China (2009CB421505), National Natural Science Foundation of China (41130964), and the United States NOAA/JHT grant (NA09OAR4310081). Additional support has been provided by the JAMSTEC, NASA, and NOAA through their sponsorships of the International Pacific Research Center (IPRC) in the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii at Manoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wang, Y. & Xu, H. Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteorol Sin 27, 455–475 (2013). https://doi.org/10.1007/s13351-013-0418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0418-y

Key words

Navigation