Skip to main content
Log in

Maintenance of Tropical Cyclone Bill (1988) after landfall

  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

The mechanism for the maintenance of Tropical Cyclone Bill (1988) after landfall is investigated through a numerical simulation. The role of the large-scale environmental flow is examined using a scale separation technique, which isolates the tropical cyclone from the environmental flow. The results show that Bill was embedded in a deep easterly-southeasterly environmental flow to the north-northeast of a large-scale depression and to the southwest of the western Pacific subtropical high. The depression had a quasibarotropic structure in the mid-lower troposphere and propagated northwestward with a speed similar to the northwestward movement of Bill.

The moisture budgets associated with both the large-scale and the tropical cyclone scale motions indicate that persistent low-level easterly-southeasterly flow transported moisture into the inner core of the tropical cyclone. The low-level circulation of the tropical cyclone transported moisture into the eyewall to support eyewall convection, providing sufficient latent heating to counteract energy loss due to surface friction and causing the storm to weaken relatively slowly after landfall.

Warming and a westward extension of the upper-level easterly flow led to westward propagation of the environmental flow in the mid-lower troposphere. As a result, Bill was persistently embedded in an environment of deep easterly flow with high humidity, weak vertical wind shear, convergence in the lower troposphere, and divergence in the upper troposphere. These conditions are favorable for both significant intensification prior to landfall and maintenance of the tropical cyclone after landfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betts, A. K., and M. J. Miller, 1993: The Betts-Miller scheme. The Representation of Cumulus Convection in Numerical Models of the Atmosphere. Meteor. Monogr., 46, 107–121.

    Google Scholar 

  • Blackadar, A. K., 1979: High resolution of the planetary boundary layer. Adv. Environ. Sci. Eng., Pfafflin J., and E. Ziegler, Eds., Gordon and Breach Science Publishers, 50–85.

    Google Scholar 

  • Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 43–64.

    Article  Google Scholar 

  • Bui, H. H., R. K. Smith, M. T. Montgomery, et al., 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 1715–1731.

    Article  Google Scholar 

  • Chen Lianshou, Xu Xiangde, Luo Zhexian, et al., 2005: Introduction to Tropical Cyclone Dynamics. China Meteorological Press, Beijing, 300 pp. (in Chinese)

    Google Scholar 

  • Clark, A. J., C. J. Schaffer, W. A. Gallus, et al., 2009: Climatology of storm reports relative to upper-level jet streaks. Wea. Forecasting, 24, 1032–1051.

    Article  Google Scholar 

  • Davis, C., W. Wang, S. Chen, et al., 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, 1990–2005.

    Article  Google Scholar 

  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 68–82.

    Article  Google Scholar 

  • —, J. A. Knaff, and B. H. Conell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233.

    Article  Google Scholar 

  • Doswell, C. A., 1977: Obtaining meteorologically significant surface divergence fields through the filtering property of objective analysis. Mon. Wea. Rev., 105, 885–892.

    Article  Google Scholar 

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1515.

    Article  Google Scholar 

  • Elsberry, R. L., 2005: Achievement of USWRP hurricane landfall research goal. Bull. Amer. Meteor. Soc., 86, 643–645.

    Article  Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.

    Article  Google Scholar 

  • —, 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485.

    Article  Google Scholar 

  • —, 2003: Tropical cyclones. Ann. Rev. Earth Planet. Sci., 31, 75–104.

    Article  Google Scholar 

  • —, C. DesAutels, C. Holloway, et al., 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843–858.

    Article  Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.

    Article  Google Scholar 

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR/TN-398+STR. National Center for Atmospheric Research, Boulder, CO, 107 pp.

    Google Scholar 

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclone. J. Atmos. Sci., 54, 2519–2541.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • JTWC, 1988: Annual tropical cyclone report. http://www.usno.navy.mil/nooc/nmfc/nmfc~ph/rss/jtwc/atcr/1988atcr/pdf/1988~complete.pdf, 61–64.

    Google Scholar 

  • Kaplan, J., and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor., 34, 2499–2512.

    Article  Google Scholar 

  • —, and —, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108.

    Article  Google Scholar 

  • Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32, 25–59.

    Article  Google Scholar 

  • Liu, Y. B., D. L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073–3093.

    Article  Google Scholar 

  • Maddox, R. A., 1980: An objective technique for separating macroscale and mesoscale features in meteorological data. Mon. Wea. Rev., 108, 1108–1121.

    Article  Google Scholar 

  • Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecasting problem and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305–323.

    Google Scholar 

  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 1093–1105.

    Article  Google Scholar 

  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.

    Article  Google Scholar 

  • —, R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 1945–1953.

    Article  Google Scholar 

  • —, and —, 2011: Paradigms for tropical-cyclone intensification. Quart. J. Roy. Meteor. Soc., 137, 1–31.

    Google Scholar 

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 3377–3405.

    Article  Google Scholar 

  • Pyle, M. E., D. Keyser, and L. F. Bosart, 2004: A diagnostic study of jet streaks: Kinematic signatures and relationship to coherent tropopause disturbances. Mon. Wea. Rev., 132, 297–319.

    Article  Google Scholar 

  • Ramsay, H. A., and L. M. Leslie, 2008: The effects of complex terrain on severe landfalling tropical cyclone Larry (2006) over Northeast Australia. Mon. Wea. Rev., 136, 4334–4354.

    Article  Google Scholar 

  • Rappaport, E. N., J. L. Grankin, A. B. Schumacher, et al., 2010: Tropical cyclone intensity change before U.S. coast landfall. Wea. Forecasting, 25, 1380–1396.

    Article  Google Scholar 

  • Schmidlin, T. W., 2006: On evacuation and deaths from Hurricane Katrina. Bull. Amer. Meteor. Soc., 87, 754–756.

    Article  Google Scholar 

  • Weinkle, J., R. Maue, and R. Pielke, 2012: Historical global tropical cyclone landfalls. J. Climate, 25, 4729–4735.

    Article  Google Scholar 

  • Xu Yamei, 2007: The numerical study of landfalling Typhoon Bill (1988): Inner core structures and budgets of energy and moisture. Acta Meteor. Sinica, 65(6), 877–887. (in Chinese)

    Google Scholar 

  • —, 2011: The genesis of tropical cyclone Bilis (2000) associated with cross-equatorial surges. Adv. Atmos. Sci., 28, 665–681.

    Article  Google Scholar 

  • Yang, M.-J., S. A. Braun, and D.-S. Chen, 2011: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 3809–3828.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamei Xu  (徐亚梅).

Additional information

Supported by the National Natural Science Foundation of China (40675026) and National (Key) Basic Research and Development (973) Program of China (2009CB421504).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y. Maintenance of Tropical Cyclone Bill (1988) after landfall. Acta Meteorol Sin 27, 486–501 (2013). https://doi.org/10.1007/s13351-013-0412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0412-4

Key words

Navigation