Skip to main content
Log in

Influences of climate change on the uptake and storage of anthropogenic CO2 in the global ocean

  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

A global ocean general circulation model, called LASG/IAP Climate system ocean model (LICOM), is employed to study the influence of climate change on the uptake and storage of anthropogenic CO2 in the global ocean. Two simulations were made: the control run (RUN1) with the climatological daily mean forcing data, and the climate change run (RUN2) with the interannually varying daily mean forcing data from the NCEP (National Centers for Environmental Prediction) of the US. The results show that the simulated distributions and storages of anthropogenic dissolved inorganic carbon (anDIC) from both runs are consistent with the data-based results. Compared with the data-based results, the simulations generate higher anDIC concentrations in the upper layer and lower storage amount of anDIC between the subsurface and 1000-m depth, especially in RUN1. A comparison of the two runs shows that the interannually varying forcing can enhance the transport of main water masses, so the rate of interior transport of anDIC is increased. The higher transfer rate of anDIC in RUN2 decreases its high concentration in the upper layer and increases its storage amount below the subsurface, which leads to closer distributions of anDIC in RUN2 to the data-based results than in RUN1. The higher transfer rate in RUN2 also induces larger exchange flux than in RUN1. It is estimated that the global oceanic anthropogenic CO2 uptake was 1.83 and 2.16 Pg C yr−1 in the two runs in 1995, respectively, and as of 1994, the global ocean contained 99 Pg C in RUN1 and 107 Pg C in RUN2 of anDIC, indicating that the model under the interannually varying forcing could take up 8.1% more anthropogenic carbon than the model under the climatological forcing. These values are within the range of other estimates based on observation and model simulation, while the estimates in RUN1 are near the low bound of other works. It is estimated that the variability of root mean square of the global air-sea anthropogenic carbon flux from the simulated monthly mean results of RUN2 with its seasonal cycle and long-term trend removed is 0.1 Pg C yr−1. The most distinct anomalies appear to be in the tropical Pacific Ocean and the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacastow, R., and E. Maier-Reimer, 1990: Oceancirculation model of the carbon cycle. Climatic Dyn., 4, 95–125.

    Google Scholar 

  • Bender, M., D. T. Ho, M. B. Hendricks, et al., 2005: Atmospheric O2/N2 changes, 1993–2002: Implications for the partitioning of fossil fuel CO2 sequestration. Global Biogeochem. Cycles, 19, GB4017, doi: 10.1029/2004GB002410.

    Article  Google Scholar 

  • Danabasoglu, G., and J. C. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate, 8, 2967–2987.

    Article  Google Scholar 

  • Doney, S. C., K. Lindsay, K. Caldeira, et al., 2004: Evaluating global ocean carbon models: The importance of realistic physics. Global Biogeochem. Cycles, 18, doi: 10.1029/2003GB002510.

  • —, I. Lima, R. A. Feely, et al., 2009: Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Res. II, 56, 640–655.

    Article  Google Scholar 

  • Dong Tiaoling, Wang Mingxing, and Liu Ruizhi, 1994: Two-dimensional atmospheric CO2-Atlantic carbon cycle model. Chinese J. Atmos. Sci., 18, 631–640. (in Chinese)

    Google Scholar 

  • Duffy, P. B., K. Caldeira, J. Selvaggi, et al., 1997: Effects of subgrid-scale mixing parameterizations on simulated distributions of natural 14C, temperature, and salinity in a three-dimensional ocean general circulation model. J. Phys. Oceanogr., 27, 498–523.

    Article  Google Scholar 

  • England, M. H., and A. C. Hirst, 1997: Chlorofluorocarbon uptake in a World Ocean model 2. Sensitivity to surface thermohaline forcing and subsurface mixing parameterizations. J. Geophys. Res., 102, 15709–15731.

    Article  Google Scholar 

  • Enting, I. G., T. M. L. Wigley, and M. Heimann, 1994: Future Emissions and Concentration of Carbon Dioxide: Key Ocean/Atmosphere/Land Analysis. CSIRO Division of Atmospheric Research Technical Paper No. 31, CSIRO, Australia, 133 pp.

    Google Scholar 

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • —, —, T. J. McDougall, et al., 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463–474.

    Article  Google Scholar 

  • Gloor, M., N. Gruber, J. L. Sarmiento, et al., 2003: A first estimate of present and pre-industrial air-sea CO2 fluxes patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett., 30(1), 1010, doi: 10.1029/2002GL015594.

    Article  Google Scholar 

  • Gruber, N., J. L. Sarmiento, and T. F. Stocker, 1996: An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem. Cycles, 10(4), 809–837, doi: 10.1029/96GB01,608.

    Article  Google Scholar 

  • —, and C. D. Keeling, 2001: An improved estimate of the isotopic air-sea disequilibrium of CO2: Implications for the oceanic uptake of anthropogenic CO2. Geophys. Res. Lett., 28(3), 555–558, doi: 10.1029/2000GL011853.

    Article  Google Scholar 

  • —, M. Gloor, S. E. Mikaloff Fletcher, et al., 2009: Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, doi: 10.1029/2008GB003349.

    Article  Google Scholar 

  • Gurney, K. R., et al., 2004: Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cycles, 18, GB1010, doi: 10.1029/2003GB002111.

    Article  Google Scholar 

  • Jin Xin and Shi Guangyu, 2001: The role of biological pump in ocean carbon cycle. Chinese J. Atmos. Sci., 25, 683–688. (in Chinese)

    Google Scholar 

  • Joos, F., R. Meyer, M. Bruno, et al., 1999: The variability in the carbon sinks as reconstructed for the last 1000 years. Geophys. Res. Lett., 26, 1437–1441.

    Article  Google Scholar 

  • Key, R. M., A. Kozyr, C. L. Sarbine, et al., 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, doi: 10.1029/2004GB002247.

  • Khatiwala, F. Primeau, and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, doi: 10.1038/nature08526.

  • Le Quéré, C., J. C. Orr, P. Monfray, et al., 2000: Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochem. Cycles, 14(4), 1247–1265.

    Article  Google Scholar 

  • Levine, N. M., S. C. Doney, R. Wanninkhof, et al., 2008: Impact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO2. J. Geophys. Res., 113, doi: 10.1029/2007JC004153.

  • Levitus, S., and T. P. Boyer, 1994: World Ocean Atlas 1994 Volume 4: Temperature. NOAA Atlas NESDIS 4, NODC, Washington D. C., 117 pp.

    Google Scholar 

  • —, R. Burgett, and T. P. Boyer, 1994: World Ocean Atlas 1994 Volume 3: Salinity. NOAA Atlas NESDIS 3, NODC, Washington D. C., 99 pp.

    Google Scholar 

  • Liu, H. L., X. H. Zhang, W. Li, et al., 2004: An eddypermitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Maier-Reimer, E., and K. Hasselmann, 1987: Transport and storage of CO2 in the ocean-an inorganic ocean-circulation carbon cycle model. Climatic Dyn., 2, 63–90.

    Article  Google Scholar 

  • Manning, A. C., and R. F. Keeling, 2006: Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B, 58, 95–116.

    Article  Google Scholar 

  • McKinley, G. A., M. J. Follows, and J. Marshall, 2004: Mechanisms of air-sea CO2 flux variability in the equatorial Pacific and the North Atlantic. Global Biogeochem. Cycles, 18, GB2011, doi: 10.1029/2003GB002179.

    Article  Google Scholar 

  • McWilliams, J. C., and Coauthors, 1983: The local dynamics of eddies in the western North Atlantic. Eddies in Marine Science. A. R. Robinson, Ed., Springer-Verlag, 92–113.

  • Mikaloff Fletcher, S. E., N. Gruber, A. R. Jacobson, et al., 2006: Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochem. Cycles, 20, GB2002, doi: 10.1029/2005GB002530.

    Article  Google Scholar 

  • Obata, A., and Y. Kitamura, 2003: Interannual variability of sea-air exchange of CO2 from 1961 to 1998 with a global ocean circulation biogeochemistry model. J. Geophys. Res., 108(C11), doi: 10.1029/2001JC001088.

  • Orr, J. E. Maier-Reimer, U. Mikolajewicz, et al., 2001: Estimates of anthropogenic carbon uptake from four 3-D global ocean models. Global Biogeochem. Cycles, 15, 43–60.

    Article  Google Scholar 

  • Pu Yifen and Wang Mingxing, 2001: An ocean carbon cycle model. Part II: Simulation analysis on the Indian Ocean. Climatic Environ. Res., 6, 67–76. (in Chinese)

    Google Scholar 

  • Rodgers, K. B., O. Aumont, C. Menkes, et al., 2008: Decadal variations in equatorial Pacific ecosystems and ferrocline/pycnocline decouping. Global Biogeochem. Cycles, 19, GB2019, doi: 10.1029/2006GB002919.

    Article  Google Scholar 

  • Sabine, C. L., R. A. Feely, N. Gruber, et al., 2004: The oceanic sink for anthropogenic CO2. Science, 367–371.

  • Sarmiento, J. L., J. C. Orr, and U. Siegenthaler, 1992: A perturbation simulation of CO2 uptake in an ocean general circulation model. J. Geophys. Res., 97, 3621–3645.

    Article  Google Scholar 

  • Six, K. D., and E. Maier-Reimer, 1996: Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Global Biogeochem. Cycles, 10(4), 559–583.

    Article  Google Scholar 

  • Solomon, S., D. H. Qin, M. Manning, et al., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Sundquist, E. T., 1993: The global carbon dioxide budget. Science, 259, 934–941.

    Google Scholar 

  • Sweeney, C., E. Gloor, A. R. Jacobson, et al., 2007: Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochem. Cycles, 21, GB2015, doi:10.1029/2006GB002784.

    Article  Google Scholar 

  • Takahashi, T., S. C. Sutherland, C. Sweeney, et al., 2002: Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601–1622.

    Article  Google Scholar 

  • Wang, X., J. R. Christian, R. Murtugudde, et al., 2006: Spatial and temporal variability of the surface water pCO2 and air-sea CO2 flux in the equatorial Pacific during 1980–2003: A basin-scale cycle model. J. Geophys. Res., 111, C07S04, doi: 10.1029/2005JC002972.

    Article  Google Scholar 

  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 9, 7373–7382.

    Article  Google Scholar 

  • Waugh, D. W., T. M. Hall, B. I. McNeil, et al., 2006: Anthropogenic CO2 in the oceans estimated using transit time distribtutions. Tellus B, 58(5), 376–389.

    Article  Google Scholar 

  • Wetzel, P., A. Winguth, and E. Maier-Reimer, 2005: Sea-to-air CO2 flux from 1948 to 2003: A model study. Global Biogeochem. Cycles, 19, GB2005, doi: 10.1029/2004GB002339.

    Article  Google Scholar 

  • Xing Runan, 2000: A three-dimensional world ocean carbon cycle model with ocean biota. Chinese J. Atmos. Sci., 24, 333–340. (in Chinese)

    Google Scholar 

  • Xu, Y. F., and Y. C. Li, 2009: Estimates of anthropogenic CO2 uptake in a global ocean model. Adv. Atmos. Sci., 26(2), 265–274, doi: 10.1007/s00376-0265-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Xu  (徐永福).

Additional information

Supported by the National Basic Research and Development (973) Program of China (2010CB951802), China Meteorological Adminstration Special Public Welfare Research Fund (GYHY2008416022), and National Natural Science Foundation of China (40730106).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xu, Y., Chu, M. et al. Influences of climate change on the uptake and storage of anthropogenic CO2 in the global ocean. Acta Meteorol Sin 26, 304–317 (2012). https://doi.org/10.1007/s13351-012-0304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-012-0304-z

Key words

Navigation