Skip to main content

Impacts of internally and externally mixed anthropogenic sulfate and carbonaceous aerosols on East Asian climate

Abstract

A coupled regional climate and aerosol-chemistry model, RIEMS 2.0 (Regional Integrated Environmental Model System for Asia), in which anthropogenic sulfate, black carbon, and organic carbon were assumed to be externally mixed (EM), internally mixed (IM) or partially internally mixed (IEM), was used to simulate the impacts of these anthropogenic aerosols on East Asian climate for the entire year of 2006. The distributions of aerosol mass concentration, radiative forcing and hence the surface air temperature and precipitation variations under three mixing assumptions of aerosols were analyzed. The results indicated that the mass concentration of sulfate was sensitive to mixing assumptions, but carbonaceous aerosols were much less sensitive to the mixing types. Modeled results were compared with observations in a variety of sites in East Asia. It was found that the simulated concentrations of sulfate and carbonaceous aerosols were in accord with the observations in terms of magnitude. The simulated aerosol concentrations in IM case were closest to observation results. The regional average column burdens of sulfate, black carbon, and organic carbon, if internally mixed, were 11.49, 0.47, and 2.17 mg m−2, respectively. The radiative forcing of anthropogenic aerosols at the top of the atmosphere increased from −1.27 (EM) to −1.97 W m−2 (IM) while the normalized radiative forcing (NRF) decreased from −0.145 (EM) to −0.139 W mg−1 (IM). The radiative forcing and NRF were −1.82 W m−2 and −0.141 W mg−1 for IEM, respectively. The surface air temperature changes over the domain due to the anthropogenic sulfate and carbonaceous aerosols were −0.067, −0.078, and −0.072 K, with maxima of −0.47, −0.50, and −0.49 K, for EM, IM, and IEM, respectively. Meanwhile, the annual precipitation variations were −8.0 (EM), −20.6 (IM), and −21.9 mm (IEM), with maxima of 148, 122, and 102 mm, respectively, indicating that the climate effects were stronger if the sulfate and carbonaceous aerosols were internally mixed.

This is a preview of subscription content, access via your institution.

References

  1. Adhikary, B., S. Kulkarni, A. Dallura, et al., 2008: A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique. Atmos. Environ., 42, 8600–8615.

    Article  Google Scholar 

  2. Andreae, M. O., O. Schmid, H. Yang, et al., 2008: Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China. Atmos. Environ., 42, 6335–6350.

    Article  Google Scholar 

  3. Bergin, M. H., G. R. Cass, J. Xu, et al., 2001: Aerosol radiative, physical, and chemical properties in Beijing during June 1999. J. Geophys. Res., 106, 17969–17980.

    Article  Google Scholar 

  4. Bohren, C. F., and D. R. Hoffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Inc., 287–324.

  5. Cao, J. J., Z. X. Shen, J. C. Chow, et al., 2009: Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology, 7(3), 161–168.

    Article  Google Scholar 

  6. Chang, L. S., and S. U. Park, 2004: Direct radiative forcing due to anthropogenic aerosols in East Asia during April 2001. Atmos. Environ., 38, 4467–4482.

    Article  Google Scholar 

  7. Chang, S. C., C. C. K. Chou, C. C. Chan, et al., 2010: Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008. Atmos. Environ., 44, 1088–1096.

    Article  Google Scholar 

  8. Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110, D11102, doi:10.1029/2004JD005441.

    Article  Google Scholar 

  9. Chung, C. E., V. Ramanathan, D. Kim, et al., 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res., 110, D24207, doi: 10.1029/2005JD006356.

    Article  Google Scholar 

  10. —, V. Ramanathan, G. Carmichael, et al., 2010: Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation. Atmos. Chem. Phys., 10, 6007–6024.

    Article  Google Scholar 

  11. Ebert, M., S. Weinbruch, A. Rausch, et al., 2002: The complex refractive index of aerosols during LACE 98 as derived from the analysis of individual particles. J. Geophys. Res., 107, 8121, doi:10.1029/2000JD000195.

    Article  Google Scholar 

  12. Fassi-Fihri, A., K. Suhre, and R. Rosset, 1997: Internal and external mixing in atmospheric aerosols by coagulation: impact on the optical and hygroscopic properties of the sulfate-soot system. Atmos. Environ., 31, 1393–1402.

    Article  Google Scholar 

  13. Fu, C. B., H. L. Wei, and Y. Qian, 2000: Documentation on regional integrated environmental model system (RIEMS). TEACOM Science Report, No. 122.

  14. —, S. Y. Wang, Z. Xiong, et al., 2005: Regional climate model inter comparison project for Asia. Bull. Amer. Meteor. Soc., 86(2), 257–266.

    Article  Google Scholar 

  15. Gelbard, F., Y. Tambour, and J. H. Seinfeld, 1980: Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci., 76(2), 541–556.

    Article  Google Scholar 

  16. Ghan, S. J., R. C. Easter, E. G. Chapman, et al., 2001: A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 106(D6), doi:10.1029/2000JD900503.

  17. Giorgi, F., X. Q. Bi, and Y. Qian, 2002: Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climatechemistry/aerosol model study. J. Geophys. Res., 107(D20), 4439, doi:10.1029/2001JD001066.

    Article  Google Scholar 

  18. —, —, and —, 2003: Indirect vs. direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climatechemistry/aerosol model. Climatic Change, 58, 345–376.

    Article  Google Scholar 

  19. Gu, Y., K. N. Liou, Y. Xue, et al., 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111, 15201, doi: 10.1029/2005JD006312.

    Article  Google Scholar 

  20. Han, Y. M., Z. W. Han, J. J. Cao, et al., 2008: Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, northern China and its transport significance. Atmos. Environ., 42, 2405–2414.

    Article  Google Scholar 

  21. Hansen, J., M. Sato, L. Nazarenko, et al., 2002: Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res., 107(D18), 4347, doi: 10.1029/2001JD001143.

    Article  Google Scholar 

  22. Haywood, J. M., and K. P. Shine, 1995: The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett., 22, 603–606.

    Article  Google Scholar 

  23. He, K. B., F. M. Yang, Y. L. Ma, et al., 2001: The characteristics of PM2.5 in Beijing, China. Atmos. Environ., 35, 4959–4970.

    Article  Google Scholar 

  24. Hegg, D. A., 1994: Cloud condensation nucleus-sulfate mass relationship and cloud albedo. J. Geophys. Res., 99(D12), 25903–25907.

    Article  Google Scholar 

  25. Heo, J. B., P. K. Hopke, and S. M. Yi, 2009: Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys., 9, 4957–4971.

    Article  Google Scholar 

  26. Han, Z. W., R. J. Zhang, Q. G. Wang, et al., 2008: Regional modeling of organic aerosols over China in summertime. J. Geophys. Res., 113, 11202, doi:10.1029/2007JD009436.

    Article  Google Scholar 

  27. Huang, Y., W. L. Chameides, and R. E. Dickson, 2007: Direct and indirect effects of anthropogenic aerosols on regional precipitation over East Asia. J. Geophys. Res., 112, 03212, doi:10.1029/2006JD007114.

    Article  Google Scholar 

  28. Intergovernmental Panel on Climate Change (IPCC), 2007: Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 153–179.

  29. Jacobson, M. Z., 2001a: Strong radiative heating due to mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697.

    Article  Google Scholar 

  30. —, 2001b: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106(D2), 1551–1568.

    Article  Google Scholar 

  31. Joseph, C. L., 1993: “BHCOAT”, http://atol.ucsd.edu/~pflatau/scatlib/scatlib.htm.

  32. Kiehl, J. T., T. L. Schneider, P. J. Rasch, et al., 2000: Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res., 105(D1), 1441–1457.

    Article  Google Scholar 

  33. Kim, D., C. Wang, A. M. L. Ekman, et al., 2008: Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive sizeresolving aerosol-climate model. J. Geophys. Res., 113, 16309, doi:10.1029/2007JD009756.

    Article  Google Scholar 

  34. Kim, Y. J., J. H. Wu, Y. I. Ma, et al., 2009: Chemical characteristics of long-range transport aerosol at background sites in Korea. Atmos. Environ., 43, 5556–5566.

    Article  Google Scholar 

  35. Kim, Y. P., and J. H. Seinfeld, 1990: Simulation of multicomponent aerosol condensation by the moving sectional method. J. Colloid Interface Sci., 135(1), 185–199.

    Article  Google Scholar 

  36. Kirkevag, A., and T. Iversen, 2002: Global direct radiative forcing by process-parameterized aerosol optical properties. J. Geophys. Res., 107(D20), 4433, doi:10.1029/2001JD000886.

    Article  Google Scholar 

  37. Lesins, G., P. Chylek, and U. Lohmann, 2002: A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res., 107(D10), 4094, doi:10.1029/2001JD000973.

    Article  Google Scholar 

  38. Li, W. J., L. Y. Shao, Z. S. Wang, et al., 2010: Size, composition, and mixing state of individual aerosol particles in a South China coastal city. J. Environ. Sci., 22(4), 561–569.

    Article  Google Scholar 

  39. Liao, H., and J. H. Seinfeld, 2005: Global impacts of gas-phase chemistryaerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. J. Geophys. Res., 110(D18), 18208, doi: 10.1029/2005JD005907.

    Article  Google Scholar 

  40. Liu, H. N., L. Zhang, and J. Wu, 2010: A modeling study of climate effect of sulfate and carbonaceous aerosols over China. Adv. Atmos. Sci., 27(6), 1276–1288.

    Article  Google Scholar 

  41. Liu, X., J. E. Penner, B. Das, et al., 2007: Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. J. Geophys. Res., 112, 11212, doi: 10.1029/2006JD008216.

    Article  Google Scholar 

  42. Lu, J., and F. M. Bowman, 2010: A detailed aerosol mixing state model for investigating interactions between mixing state, semivolatile partitioning, and coagulation. Atmos. Chem. Phys., 10, 4033–4046.

    Article  Google Scholar 

  43. Ma, Z. G., and C. B. Fu, 2005: Decade variations of arid and semi-arid boundary in China. Chinese J. Geophys., 48(3), 519–525. (in Chinese)

    Google Scholar 

  44. Manktelow, P. T., G. W. Mann, K. S. Carslaw, et al., 2007: Regional and global trends in sulfate aerosol since the 1980s. Geophys. Res. Lett., 34, L14803, doi:10.1029/2006GL028668.

    Article  Google Scholar 

  45. Meng, Z. Y., X. M. Jiang, P. Yan, et al., 2007: Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan, China. Atmos. Environ., 41, 6901–6908.

    Article  Google Scholar 

  46. Moteki, N., and Y. Kondo, 2007a: Effects of mixing state on black carbon measurement by laser-induced incandescence. Aerosol Sci. Technol., 41, 398–417, doi 10.1080/02786820701199728.

    Article  Google Scholar 

  47. —, —, Y. Miyazaki, et al., 2007b: Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004. Geophys. Res. Lett., 34, L11803, doi: 10.1029/2006GL028943.

    Article  Google Scholar 

  48. Naoe, H., and K. Okada, 2001: Mixing properties of submicrometer aerosol particles in the urban atmosphere-with regard to soot particles. Atmos. Environ., 35, 5765–5772.

    Article  Google Scholar 

  49. Novakov, T., S. Menon, T. W. Kirchstetter, et al., 2005: Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing. J. Geophys. Res., 110, 21205, doi:10.1029/2005JD005977.

    Article  Google Scholar 

  50. Okuda, T., S. Nakao, M. Katsuno, et al., 2008: Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere, 72, 917–924.

    Article  Google Scholar 

  51. Pathak, R. K., W. S. Wu, and T. Wang, 2009: Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys., 9, 1711–1722.

    Article  Google Scholar 

  52. Penner, J. E., R. Dickinson, and C. O’Neill, 1992: Effects of aerosol from biomass burning on the global radiation budget. Science, 256, 1432–1432.

    Article  Google Scholar 

  53. —, C. C. Chuang, and K. Grant, 1998: Climate forcing by carbonaceous and sulfate aerosol. Climate Dyn., 14, 839–851.

    Article  Google Scholar 

  54. Qian, Y., F. Giorgi, Y. Huang, et al., 2001: Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters. Tellus, 53B, 171–191.

    Google Scholar 

  55. —, L. R. Leung, S. J. Ghan, et al., 2003: Regional climate effects of aerosols over China: Modeling and observation. Tellus, 55B, 914–934.

    Google Scholar 

  56. Qu, W. J., X. Y. Zhang, R. Arimoto, et al., 2009: Aerosol background at two remote CAWNET sites in western China. Science of the Total Environment, 407, 3518–3529.

    Article  Google Scholar 

  57. Reddy, M. S., and O. Boucher, 2004: A study of the global cycle of carbonaceous aerosols in the LMDZT general circulation model. J. Geophys. Res., 109(D14), 14202, doi: 10.1029/2003JD004048.

    Article  Google Scholar 

  58. Schulz, M., C. Textor, S. Kinne, et al., 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, 5225–5246.

    Article  Google Scholar 

  59. Schwarz, J. P., J. R. Spackman, D. W. Fahey, et al., 2008: Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. J. Geophys. Res., 113, 03203, doi:10.1029/2007JD009042.

    Article  Google Scholar 

  60. Shiraiwa, M., Y. Kondo, N. Moteki, et al., 2007: Evolution of mixing state of black carbon in polluted air from Tokyo. Geophys. Res. Lett., 34, L16803, doi:10.1029/2007GL029819.

    Article  Google Scholar 

  61. —, —, —, et al., 2008: Radiative impact of mixing state of black carbon aerosol in Asian outflow. J. Geophys. Res., 113, 24210, doi: 10.1029/2008JD010546.

    Article  Google Scholar 

  62. So, K, L., H. Guo, and Y. S. Li, 2007: Long-term variation of PM2.5 levels and composition at rural, urban, and roadside sites in Hong Kong: Increasing impact of regional air pollution. Atmos. Environ., 41, 9427–9434.

    Article  Google Scholar 

  63. Stier, P., J. Feichter, S. Kinne, et al., 2005: The aerosolclimate model ECHAM5-HAM. Atmos. Chem. Phys., 5, 1125–1156.

    Article  Google Scholar 

  64. —, H. Seinfeld, S. Kinne, et al., 2006: Impact of nonabsorbing anthropogenic aerosols on clear-sky atmosphere absorption. J. Geophys. Res., 111, 18201, doi:10.1029/2006JD007147.

    Article  Google Scholar 

  65. Streets, D. G., C. Yu, Y. Wu, et al., 2008: Aerosol trends over China, 1980–2000. Atmos. Res., 88, 174–182.

    Article  Google Scholar 

  66. Strom, J., K. Okada, and J. Heintzenberg, 1992: On the state of mixing of particles due to brownian coagulation. J. Aerosol Sci., 23,I5, 467–480.

    Article  Google Scholar 

  67. Tan, Q., W. L. Chameides, D. Streets, et al., 2004: An evaluation of TRACE-P emission inventories from China using a regional model and chemical measurements. J. Geophys. Res., 109, 22305, doi: 10.1029/2004JD005071.

    Article  Google Scholar 

  68. Vester, B. P., M. Ebert, E. B. Barnert, et al., 2007: Composition and mixing state of the urban background aerosol in the Rhein-Main Area (Germany). Atmos. Environ., 41, 6102–6115.

    Article  Google Scholar 

  69. Warren, D. R., and J. H. Seinfeld, 1985: Simulation of aerosol size distribution evolution in systems with simultaneous nucleation, condensation and coagulation. Aerosol Sci. Technol., 4, 31–43.

    Article  Google Scholar 

  70. Worringen, A., M. Ebert, T. Trautmann, et al., 2008: Optical properties of internally mixed ammonium sulfate and soot particles: A study of individual aerosol particles and ambient aerosol populations. Appl. Optics., 47(21), 3835–3845.

    Article  Google Scholar 

  71. Wu, J., Y. Luo, and W. G. Wang, 2005: The comparison of different simulation methods for the radiative forcing of anthropogenic sulfate aerosol over East Asia. Journal of Yunnan University (Natural Sciences), 27(4), 323–331. (in Chinese)

    Google Scholar 

  72. Xie, S. D., Z. Liu, T. Chen, and L. Hua, 2008: Spatiotemporal variations of ambient PM10 source contributions in Beijing in 2004 using positive matrix factorization. Atmos. Chem. Phys., 8, 2701–2716.

    Article  Google Scholar 

  73. Xiong, Z., 2004: The multiyear surface climatology of RIEMS over East Asia. Climatic Environ. Res., 9(2), 251–260. (in Chinese)

    Google Scholar 

  74. —, S. Y. Wang, Z. M. Zeng, et al., 2003: Analysis of simulation heavy rain over the Yangtze River valley during 11–30 June 1998 using RIEMS. Adv. Atmos. Sci., 20, 815–824.

    Article  Google Scholar 

  75. —, C. B. Fu, and Q. Zhang, 2006: On the ability of the regional climate model RIEMS to simulate the present climate over East Asia. Adv. Atmos. Sci., 23(5), 784–791.

    Article  Google Scholar 

  76. —, C. B. Fu, and X. D. Yan, 2009: Regional integrated environmental model system and its simulation of East Asian summer monsoon. Chinese Sci. Bull., 54, 4253–4261.

    Article  Google Scholar 

  77. Xu, J., M. H. Bergin, X. Yu, et al., 2002: Measurement of aerosol chemical, physical and radiative properties in the Yangtze Delta region of China. Atmos. Environ., 36, 161–173.

    Article  Google Scholar 

  78. Ye, B., X. L. Ji, H. Z. Yang, et al., 2003: Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos. Environ., 37, 499–510.

    Article  Google Scholar 

  79. Yu, H., Y. J. Kaufman, M. Chin, et al., 2006: A review of measurement-based assessments of aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6, 613–666.

    Article  Google Scholar 

  80. Yu, J. Z., J. W. T. Tung, A. W. M. Wu, et al., 2004: Abundance and seasonal characteristics of elemental and organic carbon in Hong Kong PM10. Atmos. Environ., 38, 1511–1521.

    Article  Google Scholar 

  81. Zhang, H., Z. L. Wang, P. W. Guo, et al., 2009a: A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci., 26(1), 57–66.

    Article  Google Scholar 

  82. Zhang, Q., D. G. Streets, et al., 2009b: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131–5153.

    Article  Google Scholar 

  83. Zhang, X. Y., Y. Q. Wang, X. C. Zhang, et al., 2008: Carbonaceous aerosol composition over various regions of China during 2006. J. Geophys. Res., 113, 14111, doi:10.1029/2007JD009525.

    Article  Google Scholar 

  84. Zhou, M., H. Yu, R. E. Dickinson, et al., 2005: A normalized description of the direct effect of key aerosol types on solar radiation as estimiated from AERONET. J. Geophys. Res., 110, 19202, doi:10.1029/2005JD005909.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongnian Liu.

Additional information

Supported by the National Key Basic Research and Development (973) Program of China (2006CB400506 and 2010CB428501) and National Natural Science Foundation of China (40775014).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, L., Liu, H. & Zhang, N. Impacts of internally and externally mixed anthropogenic sulfate and carbonaceous aerosols on East Asian climate. Acta Meteorol Sin 25, 639–658 (2011). https://doi.org/10.1007/s13351-011-0508-7

Download citation

Key words

  • anthropogenic aerosols
  • externally mixed
  • internally mixed
  • climate effects