Skip to main content
Log in

Structural damage identification using modified Hilbert–Huang transform and support vector machine

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

In the current study, a new structural damage detection algorithm is presented using the modified Hilbert–Huang transform and support vector machine. The modified Hilbert–Huang transform is an adaptive time–frequency analysis tool that alleviates the mode mixing issue encountered with Hilbert–Huang transform. On the other hand, since the measured vibration responses are generally nonlinear and non-stationary signals, the Fourier transform utilizing the sinusoidal functions is inadequate for their processing. Thus, the modified Hilbert–Huang transform is utilized to study the measured signals. The structural damage features are constructed with the Hilbert spectrum energy of selected intrinsic mode function obtained by decomposing the measured vibration signals with modified ensemble empirical mode decomposition. The support vector machine’s classification and regression algorithms are utilized to detect the location and extent of the damage, respectively. The offshore platform's experiment model is utilized for theoretical and experimental validation of the presented method's effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Worden K, Farrar CR, Haywood J, Todd M (2008) A review of nonlinear dynamics applications to structural health monitoring. Struct Control Heal Monit 15:540–567. https://doi.org/10.1002/stc.215

    Article  Google Scholar 

  2. Doebling SW, Farrar CR, Prime MB (1998) A summary review of vibration-based damage identification methods. Shock Vib Dig 30:91–105. https://doi.org/10.1177/058310249803000201

    Article  Google Scholar 

  3. Alvandi A, Cremona C (2006) Assessment of vibration-based damage identification techniques. J Sound Vib 292:179–202. https://doi.org/10.1016/j.jsv.2005.07.036

    Article  Google Scholar 

  4. Banerjee TP, Das S (2012) Multi-sensor data fusion using support vector machine for motor fault detection. Inf Sci (NY) 217:96–107. https://doi.org/10.1016/j.ins.2012.06.016

    Article  Google Scholar 

  5. Walter GG, Shen X (1994) Wavelets and other orthogonal systems. https://doi.org/10.1201/9781315273716

  6. Chui CK (1997) Wavelets: a mathematical tool for signal analysis. https://doi.org/10.1017/CBO9781107415324.004.

  7. Huang NE, Shen Z, Long SR, Wu MC, Snin HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci 454:903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  MATH  Google Scholar 

  8. Ren WX, Sun ZS (2008) Structural damage identification by using wavelet entropy. Eng Struct 30:2840–2849. https://doi.org/10.1016/j.engstruct.2008.03.013

    Article  Google Scholar 

  9. Yun GJ, Lee SG, Carletta J, Nagayama T (2011) Decentralized damage identification using wavelet signal analysis embedded on wireless smart sensors. Eng Struct 33:2162–2172. https://doi.org/10.1016/j.engstruct.2011.03.007

    Article  Google Scholar 

  10. Lee SG, Yun GJ, Shang S (2014) Reference-free damage detection for truss bridge structures by continuous relative wavelet entropy method. Struct Heal Monit 13:307–320. https://doi.org/10.1177/1475921714522845

    Article  Google Scholar 

  11. Chen B, Zhao SL, Li PY (2014) Application of hilbert-huang transform in structural health monitoring: a state-of-the-art review. Math Probl Eng 2014:1–22. https://doi.org/10.1155/2014/317954

    Article  Google Scholar 

  12. Yang JN, Lin S, Pan S (2022) Damage detection of a health monitoring benchmark building using Hilbert–Huang spectral analysis. Adv Build Technol 2002:1017–1024. https://doi.org/10.1016/b978-008044100-9/50128-5

    Article  Google Scholar 

  13. Lin S, Yang JN, Zhou L (2005) Damage identification of a benchmark building for structural health monitoring. Smart Mater Struct 14:S162–S169. https://doi.org/10.1088/0964-1726/14/3/019

    Article  Google Scholar 

  14. Xu YL, Chen J (2004) Structural damage detection using empirical mode decomposition: experimental investigation. J Eng Mech 130:1279–1288. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1279)

    Article  Google Scholar 

  15. Wu S, Qin G, Zou J (2009) Structure health monitoring based on HHT of vibration response from unknown excitation. In: 8th Int. Symp. Test Meas., pp. 490–493

  16. Dong Y, Li Y, Lai M (2010) Structural damage detection using empirical-mode decomposition and vector autoregressive moving average model. Soil Dyn Earthq Eng 30:133–145. https://doi.org/10.1016/j.soildyn.2009.10.002

    Article  Google Scholar 

  17. Banerji S, Roy TB, Sabamehr A, Bagchi A (2017) Experimental validation of a structural damage detection method based on marginal Hilbert spectrum. Health Monit Struct Biol Syst. https://doi.org/10.1117/12.2260298

    Article  Google Scholar 

  18. Ghazi RM, Buyukozturk O (2014) Assessment and localization of active discontinuities using energy distribution between intrinsic modes. Struct Health Monit. https://doi.org/10.1007/978-3-319-04570-2-1

    Article  Google Scholar 

  19. Mohammadi Ghazi R, Büyüköztürk O (2016) Damage detection with small data set using energy-based nonlinear features. Struct Control Health Monit 23:333–348. https://doi.org/10.1002/stc.1774

    Article  Google Scholar 

  20. Han DY, Wei SM, Shi PM, Zhang Y, Gao K, Tian NY (2017) Damage identification of a derrick steel structure based on the HHT marginal spectrum amplitude curvature difference. Shock Vib 2:1–9. https://doi.org/10.1155/2017/1062949

    Article  Google Scholar 

  21. Bandara S, Rajeev P, Gad E, Sriskantharajah B, Flatley I (2019) Damage detection of in service timber poles using Hilbert–Huang transform. NDT and E Int 107:102141

    Article  Google Scholar 

  22. Xu Q (2019) Investigation of damage diagnosis of retaining wall structures based on the Hilbert damage feature vector spectrum. Shock Vib. https://doi.org/10.1155/2019/3509470

    Article  Google Scholar 

  23. Banjara NK, Sasmal S, Srinivas V (2019) Damage progression study in fibre reinforced concrete using acoustic emission technique. Smart Struct Syst 23:173–184

    Google Scholar 

  24. Xu J, Wang WX, Han QH, Liu X (2020) Damage pattern recognition and damage evolution analysis of unidirectional CFRP tendons under tensile loading using acoustic emission technology. Compos Struct 238:111948

    Article  Google Scholar 

  25. Mousavi AA, Zhang CW, Masri SF, Gholipour G (2020) Structural damage localization and quantification based on a CEEMDAN Hilbert transform neural network approach: a model steel truss bridge case study. Sensors 20:1271. https://doi.org/10.3390/s20051271

    Article  Google Scholar 

  26. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:41. https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  27. Zheng X, Hao Z, Jin Y, Lu Z (2012) Studying noise contributions of IC engine via MEEMD method. Zhejiang Univ 46:954–960

    Google Scholar 

  28. Masri SF, Smyth AW, Chassiakos AG, Caughey TK, Hunter NF (2000) Application of neural networks for detection of changes in nonlinear systems. J Eng Mech 126:666–676. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(666)

    Article  Google Scholar 

  29. Zang C, Imregun M (2001) Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection. J Sound Vib 242:813–839. https://doi.org/10.1006/jsvi.2000.3390

    Article  MATH  Google Scholar 

  30. Oh CK, Sohn H (2009) Damage diagnosis under environmental and operational variations using unsupervised support vector machine. J Sound Vib 325:224–239. https://doi.org/10.1016/j.jsv.2009.03.014

    Article  Google Scholar 

  31. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1023/A:1022627411411

    Article  MATH  Google Scholar 

  32. Khoa NLD, Zhang B, Wang Y, Chen F, Mustapha S (2014) Robust dimensionality reduction and damage detection approaches in structural health monitoring. Struct Health Monit 13:406–417. https://doi.org/10.1177/1475921714532989

    Article  Google Scholar 

  33. Yu Y, Dackermann U, Li JC, Niederleithinger E (2018) Wavelet packet energy–based damage identification of wood utility poles using support vector machine multi-classifier and evidence theory. Struct Health Monit 18:123–142

    Article  Google Scholar 

  34. Kim JW, Tola KD, Tran DQ, Park S (2019) MFL-based local damage diagnosis and SVM-based damage type classification for wire rope NDE. Materials 12:2894. https://doi.org/10.3390/ma12182894

    Article  Google Scholar 

  35. Liu CF, Liu CW, Liu CX, Huang XH, Miao JJ, Xu WL (2019) Fire Damage Identification in RC Beams based on support vector machines considering vibration test. KSCE J Civ Eng 23:4407–4416

    Article  Google Scholar 

  36. Kohiyama M, Oka K, Yamashita T (2020) Detection method of unlearned pattern using support vector machine in damage classification based on deep neural network. Struct Control Health Monit 27:1–23

    Article  Google Scholar 

  37. Luts J, Molenberghs G, Verbeke G, Van Huffel S, Suykens JAK (2012) A mixed effects least squares support vector machine model for classification of longitudinal data. Comput Stat Data Anal 56:611–628. https://doi.org/10.1016/j.csda.2011.09.008

    Article  MathSciNet  MATH  Google Scholar 

  38. Kim Y, Chong JW, Chon KH, Kim J (2013) Wavelet-based AR-SVM for health monitoring of smart structures. Smart Mater Struct 22:015003. https://doi.org/10.1088/0964-1726/22/1/015003

    Article  Google Scholar 

  39. Khatibinia M, Javad-Fadaee M, Salajegheh J, Salajegheh E (2013) Seismic reliability assessment of RC structures including soil-structure interaction using wavelet weighted least squares support vector machine. Reliab Eng Syst Saf 110:22–33. https://doi.org/10.1016/j.ress.2012.09.006

    Article  Google Scholar 

  40. Chong JW, Kim Y, Chon KH (2014) Nonlinear multiclass support vector machine-based health monitoring system for buildings employing magnetorheological dampers. J Intell Mater Syst Struct 25:1456–1468. https://doi.org/10.1177/1045389X13507343

    Article  Google Scholar 

  41. Dushyanth ND, Suma MN, Latte MV (2016) Detection and localization of damage using empirical mode decomposition and multilevel support vector machine. Appl Phys A Mater Sci Process 122:250. https://doi.org/10.1007/s00339-016-9753-z

    Article  Google Scholar 

  42. Gui G, Pan H, Lin Z, Li Y, Yuan Z (2017) Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection. KSCE J Civ Eng 21:523–534. https://doi.org/10.1007/s12205-017-1518-5

    Article  Google Scholar 

  43. Keshtan MN, Nouri-Khajavi M (2016) Bearings fault diagnosis using vibrational signal analysis by EMD method. Res Nondestruct Eval 27:155–174. https://doi.org/10.1080/09349847.2015.1103921

    Article  Google Scholar 

  44. Wang G, Chen XY, Qiao FL, Wu Z, Huang NE (2010) On intrinsic mode function. Adv Adapt Data Anal 2:277–293. https://doi.org/10.1142/S1793536910000549

    Article  MathSciNet  Google Scholar 

  45. Vapnik VN (1995) The nature of statistical learning theory. https://doi.org/10.1007/978-1-4757-2440-0

  46. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  47. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  48. Worden K, Lane AJ (2001) Damage identification using support vector machines. Smart Mater Struct 10:540–547. https://doi.org/10.1088/0964-1726/10/3/317

    Article  Google Scholar 

  49. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:2157–6904. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  50. Diao Y, Zhang X, Sun Z, Guo K, Wang Y (2018) Wavelet entropy based structural damage identification under seismic excitation. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aadaaa

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support by the Shandong Provincial Key Research and Development Program (Special Project of Public Welfare) (2019GHY112039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yansong Diao.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, Y., Jia, D., Liu, G. et al. Structural damage identification using modified Hilbert–Huang transform and support vector machine. J Civil Struct Health Monit 11, 1155–1174 (2021). https://doi.org/10.1007/s13349-021-00509-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-021-00509-5

Keywords

Navigation