Skip to main content
Log in

Local bending deformation monitoring of bi-dimensional bridge deck based on the displacement–strain transfer matrix

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

This paper proposes a novel displacement–strain transfer (DST) matrix method to estimate the local bending deformation of bridge deck using the measured strain. The DST matrix of the bi-dimensional plate with various boundary conditions is derived theoretically, and the local bending deformation of the plate can be further estimated. A plate with four simply supported edges, two simply supported edges, and one clamped edge under various load cases is simulated. The DST matrix is calculated, and the local bending deformation is finally estimated. The proposed method is also verified by the experimental test of a simply supported plate. Both the numerical and experimental results indicate that the proposed method can effectively estimate the local bending deformation of a bi-dimensional plate. Finally, a steel–concrete composite girder bridge is simulated, and the local bending deformation of the bridge deck is also effectively estimated based on the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Park HS, Lee HM, Adeli H, Lee I (2007) A new approach for health monitoring of structures: terrestrial laser scanning. Comput Aided Civ Infrastruct Eng 22(1):19–30. https://doi.org/10.1111/j.1467-8667.2006.00466.x

    Article  Google Scholar 

  2. Li SL, Wang X, Liu HZ, Zhuo Y, Su W, Di H (2020) Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement. Smart Struct Syst 26(5):591–603. https://doi.org/10.12989/sss.2020.26.5.591

    Article  Google Scholar 

  3. Lienhart W, Ehrhart M, Grick M (2017) High frequent total station measurements for the monitoring of bridge vibrations. J Appl Geod 11(1):1–8

    Article  Google Scholar 

  4. Paziewski J, Sieradzki R, Baryla R (2019) Detection of structural vibration with high-rate precise point positioning: case study results based on 100 Hz multi-gnss observables and shake-table simulation. Sensors (Basel). https://doi.org/10.3390/s19224832

    Article  Google Scholar 

  5. Zhang LX, Liu P, Yan X, Zhao XF (2020) Middle displacement monitoring of medium-small span bridges based on laser technology. Struct Control Health Monit. https://doi.org/10.1002/stc.2509

    Article  Google Scholar 

  6. Maksymenko OP, Sakharuk OM, Ivanytskyi YL, Kun PS (2020) Multilaser spot tracking technology for bridge structure displacement measuring. Struct Control Health Monit. https://doi.org/10.1002/stc.2675

    Article  Google Scholar 

  7. Artese S, Achilli V, Zinno R (2018) Monitoring of bridges by a laser pointer: dynamic measurement of support rotations and elastic line displacements: methodology and first test. Sensors (Basel). https://doi.org/10.3390/s18020338

    Article  Google Scholar 

  8. Khuc T, Catbas FN (2018) Structural identification using computer vision-based bridge health monitoring. J Struct Eng. https://doi.org/10.1061/(Asce)St.1943-541x.0001925

    Article  Google Scholar 

  9. Dong C-Z, Celik O, Catbas FN, O’Brien EJ, Taylor S (2019) Structural displacement monitoring using deep learning-based full field optical flow methods. Struct Infrastruct Eng 16(1):51–71. https://doi.org/10.1080/15732479.2019.1650078

    Article  Google Scholar 

  10. Hoskere V, Park JW, Yoon H, Spencer BF (2019) Vision-based modal survey of civil infrastructure using unmanned aerial vehicles. J Struct Eng. https://doi.org/10.1061/(Asce)St.1943-541x.0002321

    Article  Google Scholar 

  11. Ni YQ, Wang YW, Liao WY, Chen WH (2019) A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure. Smart Struct Syst 24(6):769–781. https://doi.org/10.12989/sss.2019.24.6.769

    Article  Google Scholar 

  12. Tian L, Zhang XH, Pan B (2019) Drift error compensation for vision-based bridge deflection monitoring. Smart Struct Syst 24(5):649–657. https://doi.org/10.12989/sss.2019.24.5.649

    Article  Google Scholar 

  13. Dong C-Z, Catbas FN (2020) A review of computer vision–based structural health monitoring at local and global levels. Struct Health Monit. https://doi.org/10.1177/1475921720935585

    Article  Google Scholar 

  14. Pieraccini M (2013) Monitoring of civil infrastructures by interferometric radar: a review. Sci World J. https://doi.org/10.1155/2013/786961

    Article  Google Scholar 

  15. Stabile TA, Perrone A, Gallipoli MR, Ditommaso R, Ponzo FC (2013) Dynamic survey of the musmeci bridge by joint application of ground-based microwave radar interferometry and ambient noise standard spectral ratio techniques. IEEE Geosci Remote Sens 10(4):870–874. https://doi.org/10.1109/Lgrs.2012.2226428

    Article  Google Scholar 

  16. Zhang Z, Huang Y, Palek L, Strommen R (2014) Glass fiber–reinforced polymer–packaged fiber Bragg grating sensors for ultra-thin unbonded concrete overlay monitoring. Struct Health Monit Int J 14(1):110–123. https://doi.org/10.1177/1475921714554143

    Article  Google Scholar 

  17. Zhu Z, Luo S, Feng Q, Chen Y, Wang F, Jiang L (2020) A hybrid DIC–EFG method for strain field characterization and stress intensity factor evaluation of a fatigue crack. Measurement. https://doi.org/10.1016/j.measurement.2020.107498

    Article  Google Scholar 

  18. Chen Y, Joffre D, Avitabile P (2018) Underwater dynamic response at limited points expanded to full-field strain response. J Vib Acoust. https://doi.org/10.1115/1.4039800

    Article  Google Scholar 

  19. Vurpillot S, Krueger G, Benouaich D, Clement D, Inaudi D (1998) Vertical deflection of a pre-stressed concrete bridge obtained using deformation sensors and inclinometer measurements. ACI Struct J 95(5):518–526

    Google Scholar 

  20. Tessler A, Spangler JL (2005) A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput Method Appl Mech 194(2–5):327–339. https://doi.org/10.1016/j.cma.2004.03.015

    Article  MATH  Google Scholar 

  21. Kang LH, Kim DK, Han JH (2007) Estimation of dynamic structural displacements using fiber Bragg grating strain sensors. J Sound Vib 305(3):534–542. https://doi.org/10.1016/j.jsv.2007.04.037

    Article  Google Scholar 

  22. Glaser R, Caccese V, Shahinpoor M (2012) Shape monitoring of a beam structure from measured strain or curvature. Exp Mech 52(6):591–606. https://doi.org/10.1007/s11340-011-9523-y

    Article  Google Scholar 

  23. Rapp S, Kang LH, Han JH, Mueller UC, Baier H (2009) Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors. Smart Mater Struct. https://doi.org/10.1088/0964-1726/18/2/025006

    Article  Google Scholar 

  24. Kim HI, Kang LH, Han JH (2011) Shape estimation with distributed fiber Bragg grating sensors for rotating structures. Smart Mater Struct. https://doi.org/10.1088/0964-1726/20/3/035011

    Article  Google Scholar 

  25. Wang ZC, Geng D, Ren WX, Liu HT (2014) Strain modes based dynamic displacement estimation of beam structures with strain sensors. Smart Mater Struct. https://doi.org/10.1088/0964-1726/23/12/125045

    Article  Google Scholar 

  26. Chung W, Kim S, Kim NS, Lee HU (2008) Deflection estimation of a full scale prestressed concrete girder using long-gauge fiber optic sensors. Constr Build Mater 22(3):394–401. https://doi.org/10.1016/j.conbuildmat.2006.08.007

    Article  Google Scholar 

  27. Moore JP, Rogge MD (2012) Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt Express 20(3):2967–2973. https://doi.org/10.1364/Oe.20.002967

    Article  Google Scholar 

  28. Iadicicco A, Della Pietra M, Alviggi M, Canale V, Campopiano S (2014) Deflection monitoring method using fiber Bragg gratings applied to tracking particle detectors. IEEE Photonics J. https://doi.org/10.1109/Jphot.2014.2352639

    Article  Google Scholar 

  29. Xu H, Ren WX, Wang ZC (2015) Deflection estimation of bending beam structures using fiber Bragg grating strain sensors. Adv Struct Eng 18(3):395–403. https://doi.org/10.1260/1369-4332.18.3.395

    Article  Google Scholar 

  30. Jones RT, Bellemore DG, Berkoff TA, Sirkis JS, Davis MA, Putnam MA, Friebele EJ, Kersey AD (1998) Determination of cantilever plate shapes using wavelength division multiplexed fiber Bragg grating sensors and a least-squares strain-fitting algorithm. Smart Mater Struct 7(2):178. https://doi.org/10.1088/0964-1726/7/2/005

    Article  Google Scholar 

  31. Derkevorkian A, Masri SF, Alvarenga J, Boussalis H, Bakalyar J, Richards WL (2013) Strain-based deformation shape-estimation algorithm for control and monitoring applications. AIAA J 51(9):2231–2240. https://doi.org/10.2514/1.J052215

    Article  Google Scholar 

  32. Xu L, Ge J, Patel JH, Fok MP (2017) Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing. Opt Express 25(20):24727–24734. https://doi.org/10.1364/Oe.25.024727

    Article  Google Scholar 

  33. Szilard R (2004) Theories and applications of plate analysis: classical, numerical and engineering methods. Appl Mech Rev 57(6):B32–B33

    Article  Google Scholar 

  34. Di Palma P, Palumbo G, Della Pietra M, Canale V, Alviggi M, Iadicicco A, Campopiano S (2019) Deflection monitoring of bi-dimensional structures by fiber Bragg gratings strain sensors. IEEE Sens J 19(11):4084–4092. https://doi.org/10.1109/Jsen.2019.2896910

    Article  Google Scholar 

Download references

Acknowledgements

Financial support to complete this study was provided in part by the National Natural Science Foundation of China under Grand nos. 51922036, by the key research and development project of Anhui province under Grand no. 1804a0802204, by The Fundamental Research Funds for the Central Universities under Grand no. JZ2020HGPB0117, and by the Natural Science Funds for Distinguished Young Scholar of Anhui province under Grand no. 1708085J06. The results and opinions expressed in this paper are those of the authors only and they don’t necessarily represent those of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuocai Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The calculated strain data at each measurement points for the plate with four simply supported edges

Point number

Coordinate

Strain data (με)

x (mm)

y (mm)

Case1

Case2

1

150

150

− 21.0

− 12.6

2

150

350

19.9

− 22.6

3

150

550

224.1

12.8

4

150

750

19.9

131.7

5

150

950

− 21.0

83.3

6

300

150

− 32.8

− 19.6

7

300

350

− 6.2

− 41.7

8

300

550

939.7

− 15.5

9

300

750

− 6.2

284.0

10

300

950

− 32.8

102.2

11

450

150

− 21.0

− 15.1

12

450

350

19.9

− 36.5

13

450

550

224.1

− 36.6

14

450

750

19.9

268.2

15

450

950

− 21.0

47.6

Appendix 2: The relative error of the estimated deformation for the plate with four simply supported edges

Coordinate

Load ase1

Load case2

x (mm)

y (mm)

Calculated values (mm)

Estimated values (mm)

Errors (%)

Calculated values (mm)

Estimated values (mm)

Errors (%)

75

150

− 0.75

− 0.72

3.63

− 0.24

− 0.23

1.52

75

350

− 1.86

− 1.82

2.13

− 0.66

− 0.64

2.41

75

550

− 2.56

− 2.46

3.80

− 1.24

− 1.27

− 2.36

75

750

− 1.86

− 1.88

− 1.06

− 1.59

− 1.66

− 4.23

75

950

− 0.75

− 0.75

− 0.83

− 0.98

− 1.00

− 1.87

225

150

− 1.72

− 1.77

− 2.64

− 0.55

− 0.55

0.62

225

350

− 4.39

− 4.27

2.86

− 1.56

− 1.50

3.88

225

550

− 6.43

− 6.22

3.31

− 3.04

− 3.12

− 2.67

225

750

− 4.39

− 4.34

1.26

− 4.21

− 4.42

− 4.91

225

950

− 1.72

− 1.81

− 4.89

− 2.58

− 2.67

− 3.30

375

150

− 1.72

− 1.80

− 4.88

− 0.56

− 0.58

− 2.92

375

350

− 4.39

− 4.43

− 0.80

− 1.61

− 1.65

− 2.50

375

550

− 6.43

− 6.36

1.02

− 3.32

− 3.44

− 3.69

375

750

− 4.39

− 4.44

− 1.01

− 5.27

− 5.41

− 2.76

375

950

− 1.72

− 1.81

− 4.94

− 3.11

− 3.26

− 4.63

525

150

− 0.75

− 0.76

− 1.82

− 0.25

− 0.25

− 1.90

525

350

− 1.86

− 1.85

0.83

− 0.72

− 0.75

− 4.57

525

550

− 2.56

− 2.58

− 0.92

− 1.53

− 1.46

4.85

525

750

− 1.86

− 1.82

2.46

− 2.48

− 2.52

− 1.85

525

950

− 0.75

− 0.78

− 4.44

− 1.50

− 1.42

5.00

Appendix 3: The calculated strain at each measurement points for the plate

Point number

Coordinate

Strain data (με)

Plate with one clamped edge

Plate with two opposite simply supported edges

x (mm)

y (mm)

Load case1

Load case2

Load case1

Load case2

1

150

150

− 44.6

− 40.9

41.1

53.4

2

150

350

− 35.6

− 34.6

95.0

94.4

3

150

550

− 25.3

− 24.9

137.8

114.6

4

150

750

− 14.7

− 14.5

95.0

90.3

5

150

950

− 4.2

− 4.9

40.9

41.1

6

300

150

− 44.7

− 44.6

40.7

44.9

7

300

350

− 34.5

− 34.3

89.3

97.7

8

300

550

− 25.0

− 24.4

203.5

134.1

9

300

750

− 15.1

− 13.6

89.1

97.4

10

300

950

− 4.5

− 3.5

39.0

42.0

11

450

150

− 44.6

− 48.1

41.1

31.8

12

450

350

− 35.6

− 36.3

95.0

100.4

13

450

550

− 25.3

− 25.0

137.8

185.7

14

450

750

− 14.7

− 13.4

95.0

104.6

15

450

950

− 4.2

− 0.9

40.9

43.4

Appendix 4: The relative error of the estimated deformation for the plate with one clamped edge

Coordinate

Load case1

Load case2

x (mm)

y (mm)

Calculated values (mm)

Estimated values (mm)

Errors (%)

Calculated values (mm)

Estimated values (mm)

Errors (%)

75

150

− 0.21

− 0.22

5.1

− 0.16

− 0.18

8.8

75

350

− 1.11

− 1.13

1.5

− 0.93

− 0.96

2.6

75

550

− 2.60

− 2.60

0.0

− 2.26

− 2.27

0.4

75

750

− 4.49

− 4.47

− 0.5

− 4.00

− 3.98

− 0.4

75

950

− 6.62

− 6.58

− 0.6

− 5.98

− 5.93

− 0.8

225

150

− 0.24

− 0.22

− 6.6

− 0.22

− 0.21

− 6.9

225

350

− 1.17

− 1.13

− 3.6

− 1.11

− 1.07

− 3.6

225

550

− 2.66

− 2.60

− 2.3

− 2.54

− 2.49

− 2.2

225

750

− 4.55

− 4.47

− 1.7

− 4.37

− 4.30

− 1.6

225

950

− 6.68

− 6.58

− 1.4

− 6.41

− 6.34

− 1.2

375

150

− 0.24

− 0.22

− 6.6

− 0.25

− 0.23

− 7.2

375

350

− 1.17

− 1.13

− 3.6

− 1.22

− 1.18

− 4.0

375

550

− 2.66

− 2.60

− 2.3

− 2.76

− 2.69

− 2.6

375

750

− 4.55

− 4.47

− 1.7

− 4.68

− 4.59

− 1.9

375

950

− 6.68

− 6.58

− 1.4

− 6.82

− 6.72

− 1.5

525

150

− 0.21

− 0.22

5.1

− 0.26

− 0.26

1.1

525

350

− 1.11

− 1.13

1.5

− 1.29

− 1.29

− 0.3

525

550

− 2.60

− 2.60

0.0

− 2.94

− 2.90

− 1.2

525

750

− 4.49

− 4.47

− 0.5

− 4.99

− 4.91

− 1.6

525

950

− 6.62

− 6.58

− 0.6

− 7.26

− 7.13

− 1.8

Appendix 5: The relative error of the estimated deformation for the plate with two opposite simply supported edges

Coordinate

Load case1

Load case2

x (mm)

y (mm)

Calculated values (mm)

Estimated values (mm)

Errors (%)

Calculated values (mm)

Estimated values (mm)

Errors (%)

75

150

− 2.38

− 2.49

4.5

− 2.16

− 2.23

3.1

75

350

− 5.24

− 5.23

− 0.2

− 4.31

− 4.32

0.1

75

550

− 6.05

− 6.00

− 0.8

− 5.10

− 5.01

− 1.7

75

750

− 5.37

− 5.22

− 2.7

− 4.25

− 4.18

− 1.8

75

950

− 2.48

− 2.48

0.1

− 2.08

− 2.05

− 1.3

225

150

− 2.47

− 2.49

0.7

− 2.31

− 2.39

3.6

225

350

− 5.00

− 5.23

4.6

− 4.69

− 4.87

3.7

225

550

− 6.27

− 6.00

− 4.2

− 5.61

− 5.77

2.9

225

750

− 5.44

− 5.22

− 3.9

− 4.67

− 4.82

3.1

225

950

− 2.58

− 2.48

− 3.9

− 2.27

− 2.33

2.4

375

150

− 2.55

− 2.49

− 2.3

− 2.54

− 2.56

0.9

375

350

− 5.28

− 5.23

− 1.0

− 5.28

− 5.42

2.5

375

550

− 6.10

− 6.00

− 1.7

− 6.41

− 6.53

1.7

375

750

− 5.14

− 5.22

1.7

− 5.30

− 5.46

2.9

375

950

− 2.60

− 2.48

− 4.6

− 2.56

− 2.60

1.7

525

150

− 2.51

− 2.49

− 0.6

− 2.87

− 2.73

− 5.1

525

350

− 5.27

− 5.23

− 0.8

− 6.13

− 5.97

− 2.7

525

550

− 6.41

− 6.00

− 6.4

− 7.59

− 7.28

− 4.0

525

750

− 5.32

− 5.22

− 1.8

− 6.20

− 6.09

− 1.7

525

950

− 2.36

− 2.48

5.2

− 2.97

− 2.88

− 3.1

Appendix 6: The relative error of the estimated deformation for the plate with one clamped edge

Coordinate

Load case1

Load case2

x (mm)

y (mm)

Calculated values (mm)

Estimated values (mm)

Errors (%)

Calculated values (mm)

Estimated values (mm)

Errors (%)

75

150

− 0.21

− 0.19

− 9.5

− 0.16

− 0.16

− 5.1

75

350

− 1.11

− 1.04

− 6.3

− 0.93

− 0.90

− 4.1

75

550

− 2.60

− 2.49

− 4.2

− 2.26

− 2.19

− 3.3

75

750

− 4.49

− 4.34

− 3.3

− 4.00

− 3.90

− 2.6

75

950

− 6.62

− 6.43

− 2.9

− 5.98

− 5.85

− 2.2

225

150

− 0.24

− 0.25

4.4

− 0.22

− 0.23

4.4

225

350

− 1.17

− 1.18

0.7

− 1.11

− 1.13

1.8

225

550

− 2.66

− 2.62

− 1.5

− 2.54

− 2.53

− 0.4

225

750

− 4.55

− 4.49

− 1.3

− 4.37

− 4.32

− 1.1

225

950

− 6.68

− 6.63

− 0.7

− 6.41

− 6.37

− 0.7

375

150

− 0.24

− 0.25

4.4

− 0.25

− 0.25

1.6

375

350

− 1.17

− 1.18

0.7

− 1.22

− 1.22

− 0.1

375

550

− 2.66

− 2.62

− 1.5

− 2.76

− 2.74

− 0.7

375

750

− 4.55

− 4.49

− 1.3

− 4.68

− 4.63

− 1.0

375

950

− 6.68

− 6.63

− 0.7

− 6.82

− 6.72

− 1.5

525

150

− 0.21

− 0.19

− 9.5

− 0.26

− 0.23

− 9.9

525

350

− 1.11

− 1.04

− 6.3

− 1.29

− 1.20

− 7.1

525

550

− 2.60

− 2.49

− 4.2

− 2.94

− 2.79

− 5.0

525

750

− 4.49

− 4.34

− 3.3

− 4.99

− 4.79

− 4.1

525

950

− 6.62

− 6.43

− 2.9

− 7.26

− 7.00

− 3.6

Appendix 7: The relative error of the estimated deformation for the plate with two opposite simply supported edges

Coordinate

Load case1

Load case2

x (mm)

y (mm)

Calculated values (mm)

Estimated values (mm)

Errors (%)

Calculated values (mm)

Estimated values (mm)

Errors (%)

75

150

− 2.38

− 2.28

− 4.4

− 2.16

− 2.33

8.0

75

350

− 5.24

− 4.86

− 7.2

− 4.31

− 4.61

6.9

75

550

− 6.05

− 5.53

− 8.6

− 5.10

− 5.41

6.1

75

750

− 5.37

− 4.75

− 11.5

− 4.25

− 4.48

5.3

75

950

− 2.48

− 2.26

− 8.9

− 2.08

− 2.16

4.0

225

150

− 2.47

− 2.43

− 1.9

− 2.31

− 2.36

2.4

225

350

− 5.00

− 5.22

4.5

− 4.69

− 4.77

1.7

225

550

− 6.27

− 6.44

2.8

− 5.61

− 5.67

1.1

225

750

− 5.44

− 5.22

− 4.0

− 4.67

− 4.72

1.0

225

950

− 2.58

− 2.48

− 4.1

− 2.27

− 2.30

0.9

375

150

− 2.55

− 2.43

− 4.8

− 2.54

− 2.54

0.1

375

350

− 5.28

− 5.22

− 1.0

− 5.28

− 5.31

0.6

375

550

− 6.10

− 6.34

3.9

− 6.41

− 6.48

1.0

375

750

− 5.14

− 5.18

1.0

− 5.30

− 5.35

0.8

375

950

− 2.60

− 2.52

− 3.4

− 2.56

− 2.57

0.5

525

150

− 2.51

− 2.28

− 9.1

− 2.87

− 2.78

− 3.3

525

350

− 5.27

− 4.86

− 7.8

− 6.13

− 6.07

− 1.0

525

550

− 6.41

− 5.53

− 13.7

− 7.59

− 7.61

0.3

525

750

− 5.32

− 4.75

− 10.6

− 6.20

− 6.20

0.0

525

950

− 2.36

− 2.26

− 4.3

− 2.97

− 2.93

− 1.3

Appendix 8: The measured strain data at each measurement points

Point number

Coordinate

Strain data (με)

x (mm)

y (mm)

Case 1

Case 2

Case 3

Case 4

1

150

150

44

41

40

95

2

150

350

96

72

101

148

3

150

550

139

101

188

153

4

150

750

94

93

116

93

5

150

950

40

45

50

44

6

300

150

40

49

63

89

7

300

350

90

97

121

164

8

300

550

203

136

178

162

9

300

750

90

93

128

94

10

300

950

37

50

60

44

11

450

150

41

19

53

99

12

450

350

94

105

109

151

13

450

550

136

178

170

168

14

450

750

96

101

130

98

15

450

950

41

49

32

47

Appendix 9: The relative error of the estimated deformation of the tested plate for load cases 1 and 2

Coordinate

Load case1

Load case2

x (mm)

y (mm)

Measured values (mm)

Estimated values (mm)

Errors (%)

Measured values (mm)

Estimated values (mm)

Errors (%)

75

150

− 2.40

− 2.53

5.7

− 2.13

− 1.92

− 9.8

75

350

− 5.56

− 5.29

− 4.9

− 4.09

− 3.70

− 9.4

75

550

− 6.60

− 6.32

− 4.2

− 4.89

− 4.45

− 9.0

75

750

− 5.63

− 5.25

− 6.8

− 4.22

− 3.86

− 8.4

75

950

− 2.55

− 2.49

− 2.5

− 1.85

− 1.94

4.6

225

150

− 2.61

− 2.51

− 3.8

− 2.21

− 2.19

− 1.0

225

350

− 5.40

− 5.25

− 2.8

− 4.74

− 4.49

− 5.2

225

550

− 6.83

− 6.28

− 8.0

− 5.65

− 5.41

− 4.2

225

750

− 5.68

− 5.23

− 7.9

− 4.86

− 4.61

− 5.1

225

950

− 2.59

− 2.48

− 4.1

− 2.36

− 2.27

− 4.0

375

150

− 2.65

− 2.48

− 6.2

− 2.67

− 2.46

− 7.7

375

350

− 5.65

− 5.21

− 7.8

− 5.41

− 5.28

− 2.4

375

550

− 6.64

− 6.25

− 5.9

− 6.81

− 6.38

− 6.3

375

750

− 5.45

− 5.21

− 4.4

− 5.56

− 5.35

− 3.8

375

950

− 2.71

− 2.48

− 8.7

− 2.53

− 2.60

2.4

525

150

− 2.26

− 2.46

8.8

− 3.01

− 2.73

− 9.4

525

350

− 4.99

− 5.17

3.7

− 5.54

− 6.07

9.6

525

550

− 6.01

− 6.22

3.5

− 7.12

− 7.35

3.1

525

750

− 5.33

− 5.19

− 2.6

− 6.11

− 6.10

− 0.2

525

950

− 2.37

− 2.47

4.1

− 2.79

− 2.92

4.7

Appendix 10: The relative error of the estimated deformation of the tested plate for load cases 3 and 4

Coordinate

Load case3

Load case4

x (mm)

y (mm)

Measured values (mm)

Estimated values (mm)

Errors (%)

Measured values (mm)

Estimated values (mm)

Errors (%)

75

150

− 2.77

− 2.90

4.52

− 3.17

− 3.34

5.3

75

350

− 6.69

− 6.17

− 7.82

− 6.80

− 6.50

− 4.5

75

550

− 7.60

− 7.49

− 1.40

− 7.12

− 7.26

2.0

75

750

− 6.95

− 6.33

− 8.89

− 5.42

− 5.77

6.3

75

950

− 2.88

− 3.08

6.68

− 2.72

− 2.76

1.3

225

150

− 3.23

− 2.95

− 8.64

− 3.37

− 3.43

1.7

225

350

− 6.61

− 6.18

− 6.56

− 6.46

− 6.67

3.2

225

550

− 7.45

− 7.47

0.31

− 7.85

− 7.48

− 4.7

225

750

− 6.73

− 6.30

− 6.46

− 6.24

− 5.95

− 4.7

225

950

− 3.29

− 3.02

− 8.37

− 2.78

− 2.84

2.1

375

150

− 3.19

− 3.00

− 6.01

− 3.74

− 3.51

− 6.2

375

350

− 6.59

− 6.18

− 6.12

− 6.89

− 6.85

− 0.6

375

550

− 7.70

− 7.45

− 3.19

− 7.88

− 7.69

− 2.4

375

750

− 6.51

− 6.26

− 3.80

− 6.14

− 6.13

− 0.3

375

950

− 3.24

− 2.96

− 8.81

− 3.22

− 2.92

− 9.1

525

150

− 3.34

− 3.05

− 8.77

− 3.71

− 3.59

− 3.2

525

350

− 6.33

− 6.19

− 2.16

− 7.62

− 7.02

− 7.9

525

550

− 7.41

− 7.43

0.28

− 7.70

− 7.90

2.6

525

750

− 5.80

− 6.22

7.34

− 6.91

− 6.31

− 8.7

525

950

− 3.15

− 2.90

− 7.94

− 2.89

− 3.01

4.2

Appendix 11: The relative error of the estimated deformation of the tested plate for load cases 1 and 2

Coordinate

Load case1

Load case2

x (mm)

y (mm)

Measured values (mm)

Estimated values (mm)

Errors (%)

Measured values (mm)

Estimated values (mm)

Errors (%)

75

150

− 2.40

− 2.31

− 3.5

− 2.13

− 1.92

− 9.7

75

350

− 5.56

− 5.10

− 8.3

− 4.09

− 3.90

− 4.6

75

550

− 6.60

− 5.57

− 15.6

− 4.89

− 4.74

− 3.0

75

750

− 5.63

− 4.66

− 17.1

− 4.22

− 4.07

− 3.4

75

950

− 2.55

− 2.26

− 11.3

− 1.85

− 2.01

8.3

225

150

− 2.61

− 2.64

1.2

− 2.21

− 2.27

2.6

225

350

− 5.40

− 5.55

2.7

− 4.74

− 4.58

− 3.4

225

550

− 6.83

− 6.85

0.4

− 5.65

− 5.49

− 2.8

225

750

− 5.68

− 5.52

− 2.8

− 4.86

− 4.62

− 4.9

225

950

− 2.59

− 2.61

0.9

− 2.36

− 2.29

− 3.1

375

150

− 2.65

− 2.62

− 1.2

− 2.67

− 2.56

− 3.8

375

350

− 5.65

− 5.51

− 2.6

− 5.41

− 5.36

− 0.9

375

550

− 6.64

− 6.82

2.7

− 6.81

− 6.51

− 4.5

375

750

− 5.45

− 5.52

1.2

− 5.56

− 5.35

− 3.8

375

950

− 2.71

− 2.60

− 4.0

− 2.53

− 2.61

2.9

525

150

− 2.26

− 2.27

0.4

− 3.01

− 2.62

− 13.0

525

350

− 4.99

− 4.63

− 7.1

− 5.54

− 5.84

5.4

525

550

− 6.01

− 5.50

− 8.4

− 7.12

− 7.34

3.0

525

750

− 5.33

− 4.64

− 13.0

− 6.11

− 6.01

− 1.6

525

950

− 2.37

− 2.26

− 4.8

− 2.79

− 2.86

2.3

Appendix 12: The relative error of the estimated deformation of the tested plate for load cases 3 and 4

Coordinate

Load case3

Load case4

x (mm)

y (mm)

Measured values (mm)

Estimated values (mm)

Errors (%)

Measured values (mm)

Estimated values (mm)

Errors (%)

75

150

− 2.77

− 2.85

2.8

− 3.17

− 3.39

6.7

75

350

− 6.69

− 5.95

− 11.1

− 6.80

− 6.49

− 4.6

75

550

− 7.60

− 7.30

− 3.8

− 7.12

− 7.28

2.3

75

750

− 6.95

− 6.05

− 13.0

− 5.42

− 5.79

6.8

75

950

− 2.88

− 2.83

− 1.9

− 2.72

− 2.77

1.7

225

150

− 3.23

− 3.08

− 4.6

− 3.37

− 3.50

3.8

225

350

− 6.61

− 6.36

− 3.7

− 6.46

− 6.76

4.6

225

550

− 7.45

− 7.76

4.2

− 7.85

− 7.56

− 3.6

225

750

− 6.73

− 6.45

− 4.1

− 6.24

− 6.04

− 3.2

225

950

− 3.29

− 3.15

− 4.4

− 2.78

− 2.88

3.8

375

150

− 3.19

− 3.13

− 2.0

− 3.74

− 3.64

− 2.7

375

350

− 6.59

− 6.39

− 3.0

− 6.89

− 7.13

3.5

375

550

− 7.70

− 7.72

0.3

− 7.88

− 8.08

2.5

375

750

− 6.51

− 6.44

− 1.1

− 6.14

− 6.44

4.8

375

950

− 3.24

− 3.10

− 4.2

− 3.22

− 3.06

− 4.7

525

150

− 3.34

− 2.85

− 14.7

− 3.71

− 3.54

− 4.7

525

350

− 6.33

− 5.95

− 6.0

− 7.62

− 6.80

− 10.8

525

550

− 7.41

− 7.30

− 1.5

− 7.70

− 7.68

− 0.2

525

750

− 5.80

− 6.05

4.3

− 6.91

− 6.11

− 11.6

525

950

− 3.15

− 2.83

− 10.1

− 2.89

− 2.90

0.6

Appendix 13: The calculated strain (με) of the bridge deck

y (m)

x (m)

10.5

14.02

17.5

21.02

24.5

0.5

7.63

13.24

13.04

13.24

7.63

1.5

− 5.44

19.95

62.17

19.95

− 5.44

2.475

− 16.79

11.99

124.05

11.99

− 16.79

3.275

− 38.54

− 22.01

141.56

− 23.06

− 38.54

4.74

− 68.74

− 159.42

− 195.53

− 157.82

− 68.74

6.125

− 77.62

− 225.91

− 1181.60

− 222.76

− 77.62

7.51

− 68.74

− 159.42

− 195.53

− 157.82

− 68.74

8.975

− 38.54

− 22.01

141.56

− 23.06

− 38.54

9.775

− 16.79

11.99

124.05

11.99

− 16.79

10.75

− 5.44

19.95

62.17

19.95

− 5.44

11.75

7.63

13.24

13.04

13.24

7.63

Appendix 14: The relative error of the total deformation

Coordinate

Values calculated by FEM (mm)

Cubic polynomial strain function

Spline interpolation strain function

x (m)

y (m)

Estimated values (mm)

Errors (%)

Estimated values (mm)

Errors (%)

10.5

0.00

− 7.43

− 6.41

13.80

− 6.54

11.95

10.5

1.00

− 9.72

− 8.94

8.00

− 9.04

6.99

10.5

2.00

− 11.95

− 11.28

5.61

− 11.38

4.76

10.5

4.05

− 15.90

− 15.17

4.58

− 15.33

3.57

10.5

4.74

− 16.78

− 16.03

4.46

− 16.13

3.90

10.5

5.43

− 17.33

− 16.57

4.37

− 16.69

3.71

10.5

6.13

− 17.52

− 16.81

4.03

− 16.91

3.43

10.5

6.82

− 17.33

− 16.57

4.37

− 16.80

3.07

10.5

7.51

− 16.78

− 16.03

4.46

− 16.35

2.59

10.5

8.20

− 15.90

− 15.17

4.58

− 15.29

3.82

10.5

10.25

− 11.95

− 11.28

5.61

− 11.38

4.76

10.5

11.25

− 9.72

− 8.94

8.00

− 9.04

6.99

10.5

12.25

− 7.43

− 6.41

13.80

− 6.54

11.95

14.02

0.00

− 5.04

− 3.05

39.45

− 4.32

14.29

14.02

1.00

− 8.96

− 7.42

17.18

− 8.25

7.96

14.02

2.00

− 12.96

− 11.46

11.57

− 12.12

6.47

14.02

4.05

− 21.12

− 20.20

4.34

− 19.69

6.80

14.02

4.74

− 23.30

− 22.58

3.09

− 21.64

7.12

14.02

5.43

− 24.74

− 24.18

2.27

− 23.06

6.78

14.02

6.13

− 25.25

− 24.71

2.12

− 23.60

6.52

14.02

6.82

− 24.74

− 24.18

2.27

− 23.17

6.33

14.02

7.51

− 23.30

− 22.58

3.09

− 21.86

6.17

14.02

8.20

− 21.12

− 20.20

4.34

− 19.85

6.03

14.02

10.25

− 12.96

− 11.46

11.57

− 12.12

6.47

14.02

11.25

− 8.96

− 7.42

17.18

− 8.25

7.96

14.02

12.25

− 5.04

− 3.05

39.45

− 4.32

14.29

17.5

0.00

− 2.72

− 3.67

− 34.69

− 3.76

− 38.26

17.5

1.00

− 7.51

− 8.33

− 10.90

− 8.92

− 18.77

17.5

2.00

− 12.56

− 13.66

− 8.78

− 13.73

− 9.33

17.5

4.05

− 25.49

− 26.27

− 3.09

− 24.31

4.61

17.5

4.74

− 30.13

− 32.73

− 8.64

− 30.78

− 2.18

17.5

5.43

− 33.91

− 36.61

− 7.99

− 36.94

− 8.96

17.5

6.13

− 35.94

− 38.04

− 5.84

− 39.48

− 9.85

17.5

6.82

− 33.91

− 36.61

− 7.99

− 37.05

− 9.26

17.5

7.51

− 30.13

− 32.73

− 8.64

− 30.99

− 2.86

17.5

8.20

− 25.49

− 26.27

− 3.09

− 24.16

5.22

17.5

10.25

− 12.56

− 13.66

− 8.78

− 13.73

− 9.33

17.5

11.25

− 7.51

− 8.33

− 10.90

− 8.92

− 18.77

17.5

12.25

− 2.72

− 3.67

− 34.69

− 3.76

− 38.26

Appendix 15: The relative error of the local bending deformation

Coordinate

Values calculated by FEM (mm)

Cubic polynomial strain function

Spline interpolation strain function

x (m)

y (m)

Estimated values (mm)

Errors (%)

Estimated values (mm)

Errors (%)

10.5

0.00

6.35

6.86

− 7.93

6.72

− 5.78

10.5

1.00

4.07

4.33

− 6.31

4.23

− 3.89

10.5

2.00

1.83

1.98

− 8.17

1.88

− 2.61

10.5

4.05

− 2.12

− 1.91

9.82

− 2.07

2.21

10.5

4.74

− 3.00

− 2.77

7.58

− 2.86

4.48

10.5

5.43

− 3.54

− 3.31

6.65

− 3.42

3.42

10.5

6.13

− 3.73

− 3.55

4.95

− 3.65

2.14

10.5

6.82

− 3.54

− 3.31

6.65

− 3.53

0.30

10.5

7.51

− 3.00

− 2.77

7.58

− 3.08

− 2.88

10.5

8.20

− 2.12

− 1.91

9.82

− 2.03

4.11

10.5

10.25

1.83

1.98

− 8.17

1.88

− 2.61

10.5

11.25

4.07

4.33

− 6.31

4.23

− 3.89

10.5

12.25

6.35

6.86

− 7.93

6.72

− 5.78

14.02

0.00

11.48

12.32

− 7.36

11.05

3.70

14.02

1.00

7.56

7.96

− 5.21

7.13

5.71

14.02

2.00

3.57

3.92

− 9.89

3.26

8.59

14.02

4.05

− 4.60

− 4.83

− 4.96

− 4.31

6.33

14.02

4.74

− 6.77

− 7.20

− 6.26

− 6.26

7.59

14.02

5.43

− 8.22

− 8.80

− 7.10

− 7.68

6.46

14.02

6.13

− 8.72

− 9.33

− 7.00

− 8.22

5.74

14.02

6.82

− 8.22

− 8.80

− 7.10

− 7.80

5.11

14.02

7.51

− 6.77

− 7.20

− 6.26

− 6.48

4.33

14.02

8.20

− 4.60

− 4.83

− 4.96

− 4.47

2.79

14.02

10.25

3.57

3.92

− 9.89

3.26

8.59

14.02

11.25

7.56

7.96

− 5.21

7.13

5.71

14.02

12.25

11.48

12.32

− 7.36

11.05

3.70

17.5

0.00

14.91

15.46

− 3.66

15.36

− 3.01

17.5

1.00

10.12

10.79

− 6.63

10.20

− 0.79

17.5

2.00

5.08

5.46

− 7.63

5.39

− 6.28

17.5

4.05

− 7.85

− 7.15

8.96

− 5.18

33.96

17.5

4.74

− 12.49

− 13.61

− 8.91

− 11.66

6.68

17.5

5.43

− 16.27

− 17.49

− 7.49

− 17.82

− 9.50

17.5

6.13

− 18.31

− 18.92

− 3.33

− 20.36

− 11.19

17.5

6.82

− 16.27

− 17.49

− 7.49

− 17.92

− 10.14

17.5

7.51

− 12.49

− 13.61

− 8.91

− 11.87

5.03

17.5

8.20

− 7.85

− 7.15

8.96

− 5.03

35.93

17.5

10.25

5.08

5.46

− 7.63

5.39

− 6.28

17.5

11.25

10.12

10.79

− 6.63

10.20

− 0.79

17.5

12.25

14.91

15.46

− 3.66

15.36

− 3.01

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Duan, D., Yu, H. et al. Local bending deformation monitoring of bi-dimensional bridge deck based on the displacement–strain transfer matrix. J Civil Struct Health Monit 11, 809–832 (2021). https://doi.org/10.1007/s13349-021-00485-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-021-00485-w

Keywords

Navigation