Extraction of contact-point response in indirect bridge health monitoring using an input estimation approach

Abstract

Identification of bridge dynamic properties from moving vehicle responses presents several practical benefits. However, a problem that arises when working with vehicle responses for indirect bridge health monitoring is that the bridge dynamics may get low-pass filtered by the vehicle suspension dynamics, rendering the identification of higher bridge modes difficult. Instead, the contact-point (CP) response—response at the contact point of the vehicle with the bridge surface—is a superior alternative to the vehicle response for identifying the bridge modal features. In the \(\text {CP}\) response, the vehicle dynamics is suppressed and the higher bridge modes are significantly enhanced, thus making it better suited for modal identification. Extracting the \(\text {CP}\) response from vehicle response is, however, not straightforward for a multiple degrees of freedom (MDoF) vehicle model. In this study, a novel methodology is proposed to extract \(\text {CP}\) acceleration from the measured vehicle acceleration using the knowledge of the \(\text {MDoF}\) vehicle dynamics. The \(\text {CP}\) acceleration is shown to act as a base-excited input to the test vehicle and is extracted via a joint input-state estimation procedure employing a Gaussian process latent force model (GPLFM). Numerical case studies are considered to assess the quality of the \(\text {CP}\) acceleration estimated with the proposed approach. It is found that the proposed method performs well and the extracted \(\text {CP}\) acceleration response is able to reduce the effect of vehicle dynamics and improve the prominence of higher bridge modes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  2. 2.

    Alvarez MA, Luengo D, Lawrence ND (2013) Linear latent force models using Gaussian processes. IEEE Trans Pattern Anal Mach Intell 35(11):2693–2705

    Article  Google Scholar 

  3. 3.

    Astroza R, Ebrahimian H, Li Y, Conte JP (2017) Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures. Mech Syst Signal Process 93:661–687

    Article  Google Scholar 

  4. 4.

    Callier FM, Desoer CA (2012) Linear system theory. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  5. 5.

    Dertimanis VK, Chatzi E, Azam SE, Papadimitriou C (2019) Input-state-parameter estimation of structural systems from limited output information. Mech Syst Signal Process 126:711–746

    Article  Google Scholar 

  6. 6.

    Filippone M, Zhong M, Girolami M (2013) A comparative evaluation of stochastic-based inference methods for Gaussian process models. Mach Learn 93(1):93–114

    MathSciNet  Article  Google Scholar 

  7. 7.

    Gavin HP (2018) Numerical integration for structural dynamics. Course notes in CEE 541. Department of Civil & Environmental Engineering, Duke University

  8. 8.

    González A, OBrien EJ, McGetrick PJ (2012) Identification of damping in a bridge using a moving instrumented vehicle. J Sound Vib 331(18):4115–4131

    Article  Google Scholar 

  9. 9.

    Hartikainen J, Särkkä S (2010) Kalman filtering and smoothing solutions to temporal Gaussian process regression models. In: 2010 IEEE international workshop on machine learning for signal processing (MLSP). IEEE, New York, pp 379–384

  10. 10.

    ISO 8608:1995 (1995) Mechanical vibration—road surface profiles—reporting of measured data. Standard, International Organization for Standardization, Geneva

  11. 11.

    Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35

    MathSciNet  Article  Google Scholar 

  12. 12.

    Keenahan J, OBrien EJ, McGetrick PJ, Gonzalez A (2014) The use of a dynamic truck-trailer drive-by system to monitor bridge damping. Struct Health Monit 13(2):143–157

    Article  Google Scholar 

  13. 13.

    Li J, Zhu X, Law SS, Samali B (2019) Indirect bridge modal parameters identification with one stationary and one moving sensors and stochastic subspace identification. J Sound Vib 446:1–21

    Article  Google Scholar 

  14. 14.

    Lin CW, Yang YB (2005) Use of a passing vehicle to scan the fundamental bridge frequencies: an experimental verification. Eng Struct 27(13):1865–1878

    Article  Google Scholar 

  15. 15.

    Malekjafarian A, OBrien EJ (2014) Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle. Eng Struct 81:386–397

    Article  Google Scholar 

  16. 16.

    Malekjafarian A, McGetrick PJ, OBrien EJ (2015) A review of indirect bridge monitoring using passing vehicles. Shock Vib 2015:286139

    Google Scholar 

  17. 17.

    Matarazzo T, Vazifeh M, Pakzad S, Santi P, Ratti C (2017) Smartphone data streams for bridge health monitoring. Procedia Eng 199:966–971

    Article  Google Scholar 

  18. 18.

    Matérn B (1960) Spatial variation: stochastic models and their applications to some problems in forest surveys and other sampling investigations. Meddelanden från Statens Skogsforskningsinstitut 49:1–144

    MathSciNet  Google Scholar 

  19. 19.

    McGetrick PJ, González A, OBrien EJ (2009) Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters. Insight Nondestruct Test Cond Monit 51(8):433–438

    Article  Google Scholar 

  20. 20.

    Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge

    MATH  Google Scholar 

  21. 21.

    Naets F, Croes J, Desmet W (2015) An online coupled state/input/parameter estimation approach for structural dynamics. Comput Methods Appl Mech Eng 283:1167–1188

    MathSciNet  Article  Google Scholar 

  22. 22.

    Nayek R, Chakraborty S, Narasimhan S (2019) A Gaussian process latent force model for joint input-state estimation in linear structural systems. Mech Syst Signal Process 128:497–530

    Article  Google Scholar 

  23. 23.

    Oshima Y, Yamamoto K, Sugiura K, Yamaguchi T (2009) Estimation of bridge eigenfrequencies based on vehicle responses using ICA. In: Proceedings of the 10th international conference on structural safety and reliability (ICOSSAR ’09), Osaka, Japan

  24. 24.

    Oshima Y, Yamamoto K, Sugiura K (2014) Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles. Smart Struct Syst 13(5):731–753

    Article  Google Scholar 

  25. 25.

    Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  26. 26.

    Rauch HE, Striebel C, Tung F (1965) Maximum likelihood estimates of linear dynamic systems. AIAA J 3(8):1445–1450

    MathSciNet  Article  Google Scholar 

  27. 27.

    Rogers T, Worden K, Cross E (2020) On the application of Gaussian process latent force models for joint input-state-parameter estimation: with a view to Bayesian operational identification. Mech Syst Signal Process 140

  28. 28.

    Sanchez J, Benaroya H (2014) Review of force reconstruction techniques. J Sound Vib 333(14):2999–3018

    Article  Google Scholar 

  29. 29.

    Särkkä S (2013) Bayesian filtering and smoothing, vol 3. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. 30.

    Särkkä S, Solin A (2019) Applied stochastic differential equations, vol 10. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. 31.

    Särkkä S, Álvarez MA, Lawrence ND (2018) Gaussian process latent force models for learning and stochastic control of physical systems. IEEE Trans Autom Control 64(7):2953–2960

    MathSciNet  Article  Google Scholar 

  32. 32.

    Shirzad-Ghaleroudkhani N, Mei Q, Gül M (2020) Frequency identification of bridges using smartphones on vehicles with variable features. J Bridge Eng 25(7)

  33. 33.

    Whittle P (1954) On stationary processes in the plane. Biometrika 41(3–4):434–449

    MathSciNet  Article  Google Scholar 

  34. 34.

    Yang YB, Chang KC (2009) Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique. J Sound Vib 322(4–5):718–739

    Article  Google Scholar 

  35. 35.

    Yang YB, Chen WF (2015) Extraction of bridge frequencies from a moving test vehicle by stochastic subspace identification. J Bridge Eng 21(3):04015053

    MathSciNet  Article  Google Scholar 

  36. 36.

    Yang YB, Yang JP (2018) State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles. Int J Struct Stab Dyn 18(02):1850025

    Article  Google Scholar 

  37. 37.

    Yang YB, Lin CW, Yau JD (2004) Extracting bridge frequencies from the dynamic response of a passing vehicle. J Sound Vib 272(3–5):471–493

    Article  Google Scholar 

  38. 38.

    Yang YB, Li YC, Chang KC (2012) Using two connected vehicles to measure the frequencies of bridges with rough surface: a theoretical study. Acta Mech 223(8):1851–1861

    MathSciNet  Article  Google Scholar 

  39. 39.

    Yang YB, Chang KC, Li YC (2013) Filtering techniques for extracting bridge frequencies from a test vehicle moving over the bridge. Eng Struct 48:353–362

    Article  Google Scholar 

  40. 40.

    Yang YB, Li YC, Chang KC (2014) Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study. Smart Struct Syst 13(5):797–819

    Article  Google Scholar 

  41. 41.

    Yang YB, Zhang B, Qian Y, Wu Y (2018) Contact-point response for modal identification of bridges by a moving test vehicle. Int J Struct Stab Dyn 18(05):1850073

    MathSciNet  Article  Google Scholar 

  42. 42.

    Yang YB, Xu H, Zhang B, Xiong F, Wang ZL (2020) Measuring bridge frequencies by a test vehicle in non-moving and moving states. Eng Struct 203:109859

    Article  Google Scholar 

  43. 43.

    Zhang B, Qian Y, Wu Y, Yang YB (2018) An effective means for damage detection of bridges using the contact-point response of a moving test vehicle. J Sound Vib 419:158–172

    Article  Google Scholar 

  44. 44.

    Zhang Y, Wang L, Xiang Z (2012) Damage detection by mode shape squares extracted from a passing vehicle. J Sound Vib 331(2):291–307

    Article  Google Scholar 

  45. 45.

    Zhang Y, Lie ST, Xiang Z (2013) Damage detection method based on operating deflection shape curvature extracted from dynamic response of a passing vehicle. Mech Syst Signal Process 35(1–2):238–254

    Article  Google Scholar 

Download references

Funding

This article was funded by Canada Research Chairs.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajdip Nayek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Vehicle-bridge interaction equations

The \(\text {VBI}\) equations formulated here follow closely with that provided in [13].

Equation of motion of bridge

The governing partial differential equation (PDE) of the simply supported bridge deck under the influence of a moving vehicle is written as follows:

$$\begin{aligned}& {EI} \frac{\partial ^4 d_\mathrm{b}(x,t)}{\partial x^4} + \mu _\mathrm{b} \frac{\partial d_\mathrm{b}(x,t)}{\partial t} + m_\mathrm{b} \frac{\partial ^2 d_\mathrm{b}(x,t)}{\partial t^2}\nonumber \\&\quad = f(x,t) \delta (x-vt) \end{aligned}$$
(24)

with f(xt) being the interaction force between the bridge and the vehicle

$$\begin{aligned} f(x,t) = -(m_\mathrm{u}+m_\mathrm{s}) g + k_\mathrm{t} \left( d_\mathrm{u}(t) - d_\mathrm{b}(x,t) - r(x)\right) , \end{aligned}$$
(25)

g is the acceleration due to gravity, \(\delta \left( \cdot \right)\) is the Dirac’s delta function, and \(\mu _\mathrm{b}\) is the bridge damping per unit length. The material damping \(\mu _\mathrm{b}\) is ignored, instead modal damping is assumed.

A modal solution is employed for the bridge PDE, that is, the bridge response is expressed using a set of \(n_m\) participating modes:

$$\begin{aligned} d_\mathrm{b}(x,t) = \sum _{j=1}^{n_m} \phi _j(x) \; \eta _j(t). \end{aligned}$$
(26)

\(\phi _j(x) = \sqrt{\frac{2}{m_\mathrm{b} L}} \sin \left( \frac{j \pi x}{L}\right)\) denotes the jth mass-normalized bridge mode shape and \(\eta _j(t)\) denotes the jth modal response. Substituting Eq. (26) in Eq. (24) and applying modal orthogonality conditions yields an ordinary differential equation (ODE) for the jth mode:

$$\begin{aligned}&\ddot{\eta }_j(t) + 2 \zeta _j \omega _j {\dot{\eta }}_j(t) + \left( \omega _j^2 + k_\mathrm{t} \phi _j^2\left( vt\right) \right) {\eta }_j(t) \nonumber \\&\quad - k_\mathrm{t} d_\mathrm{u} \phi _j(vt) = F(t) \phi _j(vt), \end{aligned}$$
(27)

where

$$\begin{aligned} F(t) = -(m_\mathrm{u}+m_\mathrm{s}) g -k_\mathrm{t} r(vt), \end{aligned}$$
(28)

and \(\omega _j\) and \(\zeta _j\) are the jth bridge modal frequency and damping ratio, respectively; \(\omega _j^2 = \frac{{EI}}{m_\mathrm{b}} \left( \frac{j \pi }{L}\right) ^4\) and \(\zeta _j = \frac{\mu _\mathrm{b}}{2 m_\mathrm{b} \omega _j}\).

Ambient excitation, in the form of bandlimited Gaussian white noise, is applied to the left and right supports as support excitations. The support accelerations at the left and right bridge supports are denoted as \(\ddot{d}_{\mathrm{{ls}}}(t)\) and \(\ddot{d}_{\mathrm{rs}}(t)\), respectively. Adding the support excitations, the equation of motion for the jth vibration mode of the deck becomes

$$\begin{aligned} \begin{aligned}&\ddot{\eta }_j(t) + 2 \zeta _j \omega _j {\dot{\eta }}_j(t) + \left( \omega _j^2 + k_\mathrm{t} \phi _j^2\left( vt\right) \right) {\eta }_j(t) \;-\; k_\mathrm{t} d_\mathrm{u}\phi _j(vt) \\&\quad = \;F(t) \phi _j(vt) - P_j(t), \end{aligned} \end{aligned}$$
(29)

where

$$\begin{aligned} P_j(t)= & {} \ddot{d}_{\mathrm{{ls}}}(t) \int _{0}^{L} m_\mathrm{b} \left( 1-\frac{x}{L}\right) \phi _j(x) \mathrm{d}x \nonumber \\&+ \ddot{d}_{\mathrm{rs}}(t) \int _{0}^{L} \rho \frac{x}{L} \phi _j(x) \mathrm{d}x, \end{aligned}$$
(30)

for \(j=1,\ldots ,n_m\).

Vehicle-bridge interaction equation

Combining Eqs. (2) and (29), the equation of motion of the \(\text {VBI}\) system can be written as a matrix ODE:

$$\begin{aligned} \mathbf {{M}}_{a}(t) \varvec{{\ddot{d}}}_a(t) + \mathbf {{C}}_a(t) \varvec{{{\dot{d}}}}_a(t) + \mathbf {{K}}_a(t) \varvec{{d}}_a(t) = \varvec{{F}}_a(t) \end{aligned}$$
(31)

where

$$\begin{aligned} \begin{aligned} \mathbf {{M}}_a(t)&= \begin{bmatrix} 1 &{} 0 &{} \ldots &{} 0 &{} \mathbf {{0}}\\ 0 &{} 1 &{} \ldots &{} 0 &{} \mathbf {{0}}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \ldots &{} 1 &{} \mathbf {{0}}\\ \mathbf {{0}}&{} \mathbf {{0}}&{} \ldots &{} \mathbf {{0}}&{} \mathbf {{M}}_\mathrm{v} \end{bmatrix} \\ \mathbf {{C}}_a(t)&= \begin{bmatrix} 2 \zeta _1 \omega _1 &{} 0 &{} \ldots &{} 0 &{} \mathbf {{0}}\\ 0 &{} 2 \zeta _2 \omega _2 &{} \ldots &{} 0 &{} \mathbf {{0}}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \ldots &{} 2 \zeta _{n_m} \omega _{n_m} &{} \mathbf {{0}}\\ \mathbf {{0}}&{} \mathbf {{0}}&{} \ldots &{} \mathbf {{0}}&{} \mathbf {{C}}_\mathrm{v} \end{bmatrix}\\ \mathbf {{K}}_a(t)&= \begin{bmatrix} \omega _1^2 + k_\mathrm{t} \phi _1^2(vt) &{} 0 &{} \ldots &{} 0 &{} - k_\mathrm{t} \phi _1(vt) \mathbf {{L}}^\mathrm{T}\\ 0 &{} \omega _2^2 + k_\mathrm{t} \phi _2^2(vt) &{} \ldots &{} 0 &{} - k_\mathrm{t} \phi _2(vt) \mathbf {{L}}^\mathrm{T} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \ldots &{} \omega _{n_m}^2 + k_\mathrm{t} \phi _{n_m}^2(vt) &{} - k_\mathrm{t} \phi _{n_m}(vt) \mathbf {{L}}^\mathrm{T}\\ - \mathbf {{L}} k_\mathrm{t} \phi _1(vt) &{} - \mathbf {{L}} k_\mathrm{t} \phi _2(vt) &{} \ldots &{} -\mathbf {{L}} k_\mathrm{t} \phi _{n_m}(vt) &{} \mathbf {{K}}_\mathrm{v} \end{bmatrix} \\ \varvec{{d}}_a(t)&= \begin{bmatrix} \eta _1(t)\\ \eta _2(t) \\ \vdots \\ \eta _{n_m}(t) \\ \varvec{{d}}_\mathrm{v}(t) \end{bmatrix} \quad \varvec{{F}}_a(t) = \begin{bmatrix} \phi _1(vt) F(t) - P_1(t)\\ \phi _2(vt) F(t) - P_2(t)\\ \vdots \\ \phi _{n_m}(vt) F(t) - P_{n_m}(t)\\ \mathbf {{L}} k_\mathrm{t} r(vt) \end{bmatrix}, \quad \mathbf {{L}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \end{aligned} \end{aligned}$$

Equation (31) represents a linear ODE with time-varying coefficient matrices. To solve this equation, the Newmark-Beta average acceleration method [7] is employed. On solving, one obtains the vehicle responses as well as the bridge modal responses.

Appendix 2: Kalman filter and RTS smoother

The Kalman filter and \(\text {RTS}\) smoother equations for obtaining the smoothed state estimates \(\hat{\varvec{{x}}}^a_{k|N}\) and covariance estimates \(\hat{\mathbf {{V}}}^a_{k|N}, \hat{\mathbf {{V}}}^a_{k+1,k|N}\) of the discrete-time \(\text {LTI}\) system described by Eq. (20) are given below:

Kalman filter: Do for \(k = 1,\ldots , N\)

$$\begin{aligned} {e}_k&= y_k - \mathbf {{G}}_{ad} \hat{\varvec{{x}}}_{k|k-1} \end{aligned}$$
(32a)
$$\begin{aligned} \varSigma _k&= \mathbf {{G}}_{ad} \hat{\mathbf {{V}}}^a_{k|k-1} \mathbf {{G}}_{ad}^\mathrm{T} + R \end{aligned}$$
(32b)
$$\begin{aligned} \mathbf {{K}}_k&= \hat{\mathbf {{V}}}^a_{k|k-1} \mathbf {{G}}_{ad}^\mathrm{T} \;/\; \varSigma _k \end{aligned}$$
(32c)
$$\begin{aligned} \hat{\varvec{{x}}}^a_{k|k}&= \hat{\varvec{{x}}}^a_{k|k-1} + \mathbf {{K}}_k {e}_k \end{aligned}$$
(32d)
$$\begin{aligned} \hat{\mathbf {{V}}}^a_{k|k}&= \hat{\mathbf {{V}}}^a_{k|k-1} - \mathbf {{K}}_k \varSigma _k \mathbf {{K}}_k^\mathrm{T} \end{aligned}$$
(32e)
$$\begin{aligned} \hat{\varvec{{x}}}^a_{k+1|k}&= \mathbf {{F}}_{ad} \hat{\varvec{{x}}}^a_{k|k} \end{aligned}$$
(32f)
$$\begin{aligned} \hat{\mathbf {{V}}}^a_{k+1|k}&= \mathbf {{F}}_{ad} \hat{\mathbf {{V}}}^a_{k|k} \mathbf {{F}}_{ad}^\mathrm{T} + \mathbf {{Q}}_d. \end{aligned}$$
(32g)

Here \(\hat{\varvec{{x}}}^a_{k|k-1}\) and \(\hat{\varvec{{x}}}^a_{k|k}\) represent the kth predicted and filtered state estimate respectively, and, \(\hat{\mathbf {{V}}}^a_{k|k-1}\) and \(\hat{\mathbf {{V}}}_{k|k}\) denote the kth predicted and filtered state error covariance matrices, respectively. The Kalman filter recursion is started from an initial state \(\hat{\varvec{{x}}}_{1|0}\) and an initial covariance \(\hat{\mathbf {{V}}}_{1|0}\). \({e}_k\) and \(\varSigma _k\) represent the innovation and the innovation variance at the kth time step; note they are scalar-valued in this study.

Following the filtering step, the (fixed interval) smoothing recursions given by the \(\text {RTS}\) smoother are computed as follows:

Kalman smoother: Do for \(k = N,\ldots , 1\)

$$\begin{aligned} \mathbf {{N}}_k&= \hat{\mathbf {{V}}}^a_{k|k} \mathbf {{F}}_{ad}^\mathrm{T} \left( \hat{\mathbf {{V}}}^a_{k+1|k}\right) ^{-1} \end{aligned}$$
(33a)
$$\begin{aligned} \hat{\varvec{{x}}}^a_{k|N}&= \hat{\varvec{{x}}}^a_{k|k} + \mathbf {{N}}_k \left( \hat{\varvec{{x}}}^a_{k+1|N} - \hat{\varvec{{x}}}^a_{k+1|k} \right) \end{aligned}$$
(33b)
$$\begin{aligned} \hat{\mathbf {{V}}}^a_{k|N}&= \hat{\mathbf {{V}}}^a_{k|k} + \mathbf {{N}}_k \left( \hat{\mathbf {{V}}}^a_{k+1|N} - \hat{\mathbf {{V}}}^a_{k+1|k} \right) \mathbf {{N}}_k^\mathrm{T} \end{aligned}$$
(33c)
$$\begin{aligned} \hat{\mathbf {{V}}}^a_{k+1,k|N}&= \hat{\mathbf {{V}}}^a_{k+1|N} \mathbf {{N}}_k^\mathrm{T}. \end{aligned}$$
(33d)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayek, R., Narasimhan, S. Extraction of contact-point response in indirect bridge health monitoring using an input estimation approach. J Civil Struct Health Monit 10, 815–831 (2020). https://doi.org/10.1007/s13349-020-00418-z

Download citation

Keywords

  • Contact-point response
  • Indirect health monitoring
  • Vehicle-bridge interaction
  • Joint input-state estimation
  • Latent force model