Advertisement

Journal of Civil Structural Health Monitoring

, Volume 8, Issue 4, pp 597–605 | Cite as

Cable force monitoring and prediction for cable group of long-span cable-supported bridges

  • Jialin Dong
  • Xin Yan
  • Shunlong Li
Original Paper
  • 55 Downloads

Abstract

Cable force monitoring is an essential and critical part of structural health monitoring for long-span cable-supported bridges. Considering economical and efficient issues, the accuracy and quality of safety assessment depend considerably on a reasonable cable-monitoring scheme, especially the number and locations of limited sensors. This paper presents the optimal sensor placement for cable force monitoring and cable force prediction in non-sensor positions with optimal sensor arrangement. Bond-energy algorithm was used to obtain optimal sensor placement strategy, where mutual information was employed to describe the inherent spatial correlation of cable group. To maximize useful cable force information of cable group utilizing from optimal sensor arrangement, particle-swarm optimization-based Kernel Extreme Learning Machine model was employed for forecasting cable forces in non-sensor positions. The analysis results illustrated that the proposed kernel extreme learning machine can achieve better predictive performance than multiple linear regression model and multiple adaptive spline regression model with higher accuracy and generalization. The cable force monitoring and prediction with notable decrease of sensor number lays a comprehensive basis for bridge safety assessment and verified the effectiveness of the proposed method.

Keywords

Structural health monitoring Optimal sensor placement Spatial correlation Extreme learning machine Cable force prediction 

Notes

Acknowledgements

The research described in this paper was financially supported by the National Natural Science Foundation of China (NSFC Grant Nos. 51478149, 51678204, and 51638007) and Guangxi Science Base and Talent Program (Grand No. 710281886032).

References

  1. 1.
    Udwadia FE (2010) Methodology for optimum sensor locations for parameter identification in dynamic systems. J Eng Mech 120(2):368–390CrossRefGoogle Scholar
  2. 2.
    Lim KB (2012) Method for optimal actuator and sensor placement for large flexible structures. J Guid Control Dyn 15(1):49–57MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chung YT, Moore D (1993) On-orbit sensor placement and system identification of space station with Limited instrumentations. In: Proceedings of the 11th international modal analysis conference. Union College Press, Schenectady, pp 41–46Google Scholar
  4. 4.
    Kammer DC (1990) Sensor placement for on-orbit modal identification and correlation of large space structures. J Guid Control Dyn 14(2):251–259CrossRefGoogle Scholar
  5. 5.
    Meo M, Zumpano G (2005) On the optimal sensor placement techniques for a bridge structure. Eng Struct 27:1488–1497CrossRefGoogle Scholar
  6. 6.
    Yao L, Sethares WA, Kammer DC (1992) Sensor placement for on-orbit modal identification of large space structure via a genetic algorithm. In: Proceedings of the IEEE international conference on systems engineering, KobeGoogle Scholar
  7. 7.
    Li D, Li H, Fritzen C (2007) The connection between effective independence and modal kinetic energy methods for sensor placement. J Sound Vib 305(4–5):945–955CrossRefGoogle Scholar
  8. 8.
    Doebling SW (1995) Measurement of structural flexibility matrices for experiments with incomplete reciprocity. In: Proceedings of the international symposium on physical design, JapanGoogle Scholar
  9. 9.
    Dewolf JT, Zhao J (1999) Sensitivity study for vibrational parameters used in damage detection. J Struct Eng 125(4):410–416CrossRefGoogle Scholar
  10. 10.
    Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA J 3(2):380CrossRefGoogle Scholar
  11. 11.
    Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In: Proceedings of the 1st international modal analysis conference. SEM, OrlandoGoogle Scholar
  12. 12.
    Penny J, Friswell M, Garvey S (1994) Automatic choice of measurement locations for dynamic testing. AIAA J 32(2):407–414CrossRefGoogle Scholar
  13. 13.
    Li M, Vetterli M (2003) Source-channel communication in sensor networks. Lect Notes Comput Sci 2634:553Google Scholar
  14. 14.
    Pradhan SS, Kusuma J, Ramchandran K (2002) Distributed compression in a dense microsensor network. IEEE Signal Process Mag 19(2):51–60CrossRefGoogle Scholar
  15. 15.
    Lu W, Teng J, Wen R, Zhu J, Li C (2017) Malfunction diagnosis of sensors based on correlation of measurements. Meas Sci Technol 28(2):024004CrossRefGoogle Scholar
  16. 16.
    Lu W, Wen R, Teng J, Li X, Li C (2016) Data correlation analysis for optimal sensor placement using a bond energy algorithm. Measurement 91:509–518CrossRefGoogle Scholar
  17. 17.
    Li SL, Dong JL, Lu W, Li H, Xu WC, Jin Y (2017) Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm. Smart Struct Syst 20(6):769–780Google Scholar
  18. 18.
    Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122CrossRefGoogle Scholar
  19. 19.
    Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRefzbMATHGoogle Scholar
  20. 20.
    Hagan MT, Menhaj MB (1994) Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw 5(6):989CrossRefGoogle Scholar
  21. 21.
    Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRefGoogle Scholar
  22. 22.
    Mangasarian OL, Wild EW (2005) Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74CrossRefGoogle Scholar
  23. 23.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297zbMATHGoogle Scholar
  24. 24.
    Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feed forward networks. IEEE Trans Neural Netw 17(6):1411CrossRefGoogle Scholar
  25. 25.
    Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern 42(2):513–529CrossRefGoogle Scholar
  26. 26.
    Deng W, Zheng Q, Zhang K (2013) Reduced kernel extreme learning machine. Adv Intell Syst Comput 226:63–69CrossRefGoogle Scholar
  27. 27.
    Cambria E, Gastaldo P, Bisio F, Zunino R (2015) An elm-based model for affective analogical reasoning. Neurocomputing 149:443–455CrossRefGoogle Scholar
  28. 28.
    Peng Y, Kong W, Yang B (2017) Orthogonal extreme learning machine for image classification. Neurocomputing 266:458–464CrossRefGoogle Scholar
  29. 29.
    Xu S, Wang J (2017) Dynamic extreme learning machine for data stream classification. Neurocomputing 238:433–449CrossRefGoogle Scholar
  30. 30.
    Zhang X, Zhu S, Xu Y, Hong X (2011) Integrated optimal placement of displacement transducers and strain gauges for better estimation of structural response. Int J Struct Stab Dyn 11(03):581–602CrossRefzbMATHGoogle Scholar
  31. 31.
    Lu W, Teng J (2009) A method of optimal sensor placement based on data fusion. J Vib Shock 28(9):52–55Google Scholar
  32. 32.
    Mccormick WT, Deutsch SB, Martin JJ, Schweitzer PJ (1969) Identification of data structures and relationships by matrix reordering techniques (RP-512). Institute for Defense Analyses, Arlington, VAGoogle Scholar
  33. 33.
    Huang GB (2014) An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 6(3):376–390CrossRefGoogle Scholar
  34. 34.
    Cheng C, Tay WP, Huang GB (2012) Extreme learning machines for intrusion detection. Int Joint Conf Neural Netw IEEE 20:1–8Google Scholar
  35. 35.
    Zhang L, Li J, Lu H (2016) Saliency detection via extreme learning machine. Neurocomputing 218:103–112CrossRefGoogle Scholar
  36. 36.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol. 4, pp 1942–1948Google Scholar
  37. 37.
    Friedman JH, Roosen CB (1995) An introduction to multivariate adaptive regression splines. Stat Methods Med Res 4(3):197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Transportation Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Zhejiang Provincial Institute of Communications Planning, Design & ResearchHangzhouChina
  3. 3.Zhejiang Provincial Engineering Research Center for Bridge & Tunnel IndustrializationHangzhouChina
  4. 4.Research Institute of Highway Ministry of TransportBeijingChina

Personalised recommendations