Journal of Civil Structural Health Monitoring

, Volume 8, Issue 4, pp 661–671 | Cite as

Crack detection in prestressed concrete structures by measuring their natural frequencies

  • G. D. ErcolaniEmail author
  • D. H. Felix
  • N. F. Ortega
Original Paper


When inspecting the health of a civil structure, it is important to have efficient techniques to detect the possible presence of structural damage. This work deals with the detection of damage in prestressed concrete structures, which are widely used in road bridges and long span slabs, among others. Concrete structures can be affected by different pathologies, with the transverse cracks beingone of the most dangerous damages, since they involve a localized reduction of the flexural rigidity of the structure. Such cracks change both the static and dynamic behavior of the structure. In this paper, an inverse method of damage detection is applied on two experimental beams built in the laboratory, from the measurement of the first three natural frequencies of vibration. An algorithm for solving the system of equations has been developed by the authors. Explicit equations were obtained to calculate both the crack position and its depth. The predicted damages by the algorithm have been in good agreement with the real damages of the experimental models. An important aspect of this methodology for crack detection is the simplicity of its experimental implementation.


Prestressed concrete Crack detection Natural frequencies Inverse method Dynamic tests 



The authors thank the Department of Engineering and the General Secretariat of Science and Technology of the Universidad Nacional del Sur (UNS), as well as the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Comisión de Investigaciones Científicas de la Prov. de Buenos Aires (CIC), for their support to the development of these investigations.


  1. 1.
    Karayannis CG, Chalioris CE (2013) Design of partially prestressed concrete beams based on the cracking control provisions. Eng Struct 48:402–416. CrossRefGoogle Scholar
  2. 2.
    Yao Y, Tung S-TE, Glisic B (2014) Crack detection and characterization techniques—an overview. Struct Control Health Monit 21:1387–1413. CrossRefGoogle Scholar
  3. 3.
    Dai L, Wang L, Zhang J, Zhang X (2016) A global model for corrosion-induced cracking in prestressed concrete structures. Eng Fail Anal 62:263–275. CrossRefGoogle Scholar
  4. 4.
    Darmawan SM, Stewart MG (2007) Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders. Struct Saf 29:16–31. CrossRefGoogle Scholar
  5. 5.
    Lee BY, Koh KT, Ismail MA, Ryu HS, Kwon SJ (2017) Corrosion and strength behaviors in prestressed tendon under various tensile stress and impressed current conditions. Adv Mater Sci Eng. Google Scholar
  6. 6.
    Calavera J (2005) Patología de Estructuras de Hormigón Armado y Pretensado, 2nd edn. Intemac Ediciones, MadridGoogle Scholar
  7. 7.
    CEB-FIP (1993) Model code 1990: Design code. T. Telford, LondonGoogle Scholar
  8. 8.
    Comisión Permanente del Hormigón (2011) EHE-08 Instrucción de Hormigón Estructural (5th ed.) Ministerio de Fomento, MadridGoogle Scholar
  9. 9.
    Centro de Investigación de los Reglamentos Nacionales de Seguridad para las Obras Civiles (2005) CIRSOC 201 Reglamento Argentino de Estructuras de Hormigón. INTI, Buenos AiresGoogle Scholar
  10. 10.
    American Concrete Institute (2014) ACI 318-14: building code requirements for structural concrete and commentary. American Concrete Institute, Farmington HillsGoogle Scholar
  11. 11.
    Unger JF, Teughels A, De Roeck G (2006) System identification and damage detection of a prestressed concrete beam. J Struct Eng 132(11):1691–1698. CrossRefGoogle Scholar
  12. 12.
    Anifantis N, Dimarogonas A (1983) Stability of columns with a single crack subjected to follower and vertical loads. J Solids Struct 19(4):281–291. CrossRefzbMATHGoogle Scholar
  13. 13.
    Ostachowicz WM, Krawczuk M (1991) Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J Sound Vib 150:191–201. CrossRefGoogle Scholar
  14. 14.
    Rizos PF, Aspragathos N, Dimarogonas AD (1990) Identification of crack location and magnitude in a cantilever beam from the vibration modes. J. Sound Vibration 138(3):381–388. CrossRefGoogle Scholar
  15. 15.
    Liang RY, Choy FK, Hu J (1991) Detection of cracks in beam structures using measurements of natural frequencies. J Franklin Inst 328:505–518. CrossRefzbMATHGoogle Scholar
  16. 16.
    Nandwana BP, Maiti SK (1997) Modelling of vibration of beam in presence of inclined edge or internal crack for its possible detection based on frequency measurements. Eng Fract Mech 58:193–205. CrossRefGoogle Scholar
  17. 17.
    Rosales MB, Filipich CP, Buezas FS (2009) Crack detection in beam-like structures. Eng Struct 31:2257–2264. CrossRefGoogle Scholar
  18. 18.
    Orbanich CJ, Rosales MB, Ortega NF, Filipich CP (2009) Detección de fallas en vigas de fundación elástica mediante el método inverso. Mecánica Computacional XXVIII:613–631Google Scholar
  19. 19.
    Mazanoglu K, Sabuncu M (2012) A frequency based algorithm for identification of single and double cracked beams via a statistical approach used in experiment. Mech Syst Signal Process 30:168–185. CrossRefGoogle Scholar
  20. 20.
    Barad KH, Sharma DS, Vyas V (2013) Crack detection in cantilever beam by frequency based method. Procedia Eng 51:770–775. CrossRefGoogle Scholar
  21. 21.
    Rao SS (2007) Vibration of continuous systems. Wiley, HobokenGoogle Scholar
  22. 22.
    Blevins RD (2001) Formulas for natural frequency and mode shape. Krieger Publishing Company, UKGoogle Scholar
  23. 23.
    Wolfram S (2015) An elementary introduction to the wolfram language. Wolfram Media, IncGoogle Scholar
  24. 24.
    Vernier (2008) Labquest interfase. Software and Technology, Beaverton, OR, USAGoogle Scholar
  25. 25.
    Vernier (2008) Logger pro 3.6.1. Software and Technology, Beaverton, OR, USAGoogle Scholar
  26. 26.
    Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644. Google Scholar
  27. 27.
    Shannon E (1949) Communication in the presence of noise. Proc Inst Radio Eng 37:10–21. MathSciNetGoogle Scholar
  28. 28.
    Clough RW, Penzien J (1995) Dynamics of structures, 2nd edn. McGrawHill, New YorkzbMATHGoogle Scholar
  29. 29.
    COMSOL (2013) COMSOL Multiphysics User’s Guide, Version 4.4Google Scholar
  30. 30.
    Jason L, Ghavamianc S, Courtois A (2010) Truss vs solid modeling of tendons in prestressed concrete structures: consequences on mechanical capacity of a representative structural volume. Eng Struct 32:1779–1790. CrossRefGoogle Scholar
  31. 31.
    Yapar O, Basu PK, Nordendale N (2015) Accurate finite element modeling of pretensioned prestressed concrete beams. Eng Struct 101:163–178. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. D. Ercolani
    • 1
    • 2
    Email author
  • D. H. Felix
    • 1
  • N. F. Ortega
    • 1
    • 3
  1. 1.Instituto de Ingeniería, Departamento de IngenieríaUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Comisión de Investigaciones Científicas de la Prov. de Buenos AiresBuenos AiresArgentina

Personalised recommendations