Advertisement

Structural identification of a tied arch bridge using parallel genetic algorithms and ambient vibration monitoring with a wireless sensor network

  • Matthew Whelan
  • Neal Salas Zamudio
  • Timothy Kernicky
Original Paper
  • 137 Downloads

Abstract

Structural identification has received increased attention as an applied technique for performance-based assessment of large civil structures by providing a means to improve the correlation of simulated responses in numerical models to experimental measurements of actual behavior under in-service conditions. This paper presents the application of structural identification to a large set of modal parameter estimates obtained through ambient vibration monitoring of a tied arch bridge with a wireless sensor network facilitating high-rate, real-time vibration measurement over 48 measurement channels. Model updating of a finite element model of the span is achieved through global optimization of an objective function using an integer-constrained genetic algorithm implemented on a parallel computing cluster to facilitate the use of large population sizes. The influence of the number of modes included in the objective function and the number of uncertain parameters included in the optimization are explored for this real-world application. The results highlight the capability of the genetic algorithm to achieve an exceptionally strong correlation between the calibrated finite element model and the experimentally measured natural frequencies and mode shapes over a large set of modal parameter estimates. However, variations observed in the parameter solutions, identified as the number of uncertain parameters updated and modes included in the objective function are varied, serve to highlight the challenges associated with reliable parameter estimation in structural identification using classical optimization-based approaches.

Keywords

Structural identification Finite element model updating Ambient vibration monitoring Structural health monitoring Operational modal analysis 

References

  1. 1.
    Çatbaş F, Kijewski-Correa T, Aktan A (2013) Structural identification of constructed systems: approaches, methods, and technologies for effective practice of St-Id. American Society of Civil Engineers, New YorkCrossRefGoogle Scholar
  2. 2.
    Aktan A, Brownjohn J (2013) Structural identification: opportunities and challenges. J Struct Eng 139:1639–1647CrossRefGoogle Scholar
  3. 3.
    Sanayei M, Phelps J, Sipple J, Bell E, Brenner B (2012) Intrumentation, nondestructive testing, and finite-element model updating for bridge evaluation using strain measurements. J Bridge Eng 17(1):130–138CrossRefGoogle Scholar
  4. 4.
    Whelan MJ, Gangone MV, Janoyan KD, Jha R (2011) Operational modal analysis of a multi-span skew bridge using real-time wireless sensor networks. J Vib Control 17(13):1952–1963CrossRefGoogle Scholar
  5. 5.
    Sipple JD, Sanayei M (2014) Full-scale bridge finite-element model calibration using measured frequency-response functions. J Bridge Eng 20(9):04014103CrossRefGoogle Scholar
  6. 6.
    Lynch JP (2007) An overview of wireless structural health monitoring for civil structures. Philos Trans R Soc A 365(1851):345–372CrossRefGoogle Scholar
  7. 7.
    Ntotsios E, Karakostas C, Lekidis V, Panetsos P, Nikolaou I, Papadimitriou C, Salonikos T (2009) Structural identification of Egnatia Odos bridges based on ambient and earthquake induced vibrations. Bull Earthq Eng 7(2):485–501CrossRefGoogle Scholar
  8. 8.
    Whelan MJ, Gangone MV, Janoyan KD, Hoult NA, Middleton CR, Soga K (2010) Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification. Smart Struct Syst 6(5–6):579–593CrossRefGoogle Scholar
  9. 9.
    Chen X, Omenzetter P, Beskhyroun S et al. (2014) Calibration of the finite element model of a twelve-span prestressed concrete bridge using ambient vibration data. In: EWSHM-7th European Workshop on Structural Health MonitoringGoogle Scholar
  10. 10.
    Teughels A, De Roeck G (2004) Structural damage identification of the highway bridge Z24 by FE model updating. J Sound Vib 278(3):589–610CrossRefGoogle Scholar
  11. 11.
    Moaveni B, Stavridis A, Lombaert G, Conte JP, Shing PB (2012) Finite-element model updating for assessment of progressive damage in a 3-story infilled RC frame. J Struct Eng 139(10):1665–1674CrossRefGoogle Scholar
  12. 12.
    Kernicky TP, Whelan MJ, Weggel DC, Rice CD (2014) Structural identification and damage characterization of a masonry infill wall in a full-scale building subjected to internal blast load. J Struct Eng 141(1):D4014013CrossRefGoogle Scholar
  13. 13.
    Brownjohn J, De Stefano A, Xu Y-L, Wenzel H, Aktan AE (2011) Vibration-based monitoring of civil infrastructures: challenges and successes. J Civil Struct Health Monit 1(3–4):79–95CrossRefGoogle Scholar
  14. 14.
    Mitchell M (1998) An introduction to genetic algorithms. MIT press, CambridgezbMATHGoogle Scholar
  15. 15.
    Mathworks Inc. (2014) Global optimization toolbox user’s guide. Mathworks Inc., NatickGoogle Scholar
  16. 16.
    Ribeiro D, Calçada R, Delgado R, Brehm M, Zabel V (2012) Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters. Eng Struct 40:413–435CrossRefGoogle Scholar
  17. 17.
    Cantieni R, Brehm M, Zabel V, Rauert T, Hoffmeister B (2008) Ambient testing and model updating of a filler beam bridge for high-speed trains. In: Proceedings of 7th European Conference on Structural Dynamics (EURODYN), Southampton, pp. 7–9Google Scholar
  18. 18.
    Mottershead JE, Link M, Friswell MI (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Process 25(7):2275–2296CrossRefGoogle Scholar
  19. 19.
    Jaishi B, Ren W-X (2005) Structural finite element model updating using ambient vibration test results. J Struct Eng 131(4):617–628CrossRefGoogle Scholar
  20. 20.
    Živanović S, Pavic A, Reynolds P (2007) Finite element modelling and updating of a lively footbridge: the complete process. J Sound Vib 301(1):126–145Google Scholar
  21. 21.
    Zhou Y, Prader J, Weidner J, Dubbs N, Moon F, Aktan AE (2011) Structural identification of a deteriorated reinforced concrete bridge. J Bridge Eng 17(5):774–787CrossRefGoogle Scholar
  22. 22.
    Morassi A, Tonon S (2008) Dynamic testing for structural identification of a bridge. J Bridge Eng 13(6):573–585CrossRefzbMATHGoogle Scholar
  23. 23.
    Schlune H, Plos M, Gylltoft K (2009) Improved bridge evaluation through finite element model updating using static and dynamic measurements. Eng Struct 31:1477–1485CrossRefGoogle Scholar
  24. 24.
    Caicedo J, Yun G (2010) A novel evolutionary algorithm for identifying multiple alternative solutions in model updating. Struct Health Monit 10(5):491–501CrossRefGoogle Scholar
  25. 25.
    Zimmerman DC, Yap K, Hasselman T (1999) Evolutionary approach for model refinement. Mech Syst Signal Process 13(4):609–625CrossRefGoogle Scholar
  26. 26.
    Perera R, Fang S-E, Ruiz A (2010) Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modelling errors. Meccanica 45(5):723–734CrossRefzbMATHGoogle Scholar
  27. 27.
    Perera R, Ruiz A, Manzano C (2007) An evolutionary multiobjective framework for structural damage localization and quantification. Eng Struct 29(10):2540–2550CrossRefGoogle Scholar
  28. 28.
    Marwala T (2010) Finite element model updating using computational intelligence techniques. Springer, New YorkCrossRefzbMATHGoogle Scholar
  29. 29.
    Perera R, Ruiz A (2008) A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization. Mech Syst Signal Process 22(4):970–991CrossRefGoogle Scholar
  30. 30.
    Shabbir F, Omenzetter P (2016) Model updating using genetic algorithms with sequential niche technique. Eng Struct 120:166–182CrossRefGoogle Scholar
  31. 31.
    Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Natl Bur Stand 45(4):255–282MathSciNetCrossRefGoogle Scholar
  32. 32.
    Schaefer R (2007) Foundations of global genetic optimization. Springer, New YorkCrossRefzbMATHGoogle Scholar
  33. 33.
    Levin R, Lieven N (1998) Dynamic finite element model updating using simulated annealing and genetic algorithms. Mech Syst Signal Process 12(1):91–120CrossRefGoogle Scholar
  34. 34.
    Kourehli S, Amiri GG, Ghafory-Ashtiany M, Bagheri A (2012) Structural damage detection based on incomplete modal data using pattern search algorithm. J Vib Control 19:821–833CrossRefGoogle Scholar
  35. 35.
    Shabbir F, Omenzetter P (2015) Particle swarm optimization with sequential niche technique for dynamic finite element model updating. Comput Aided Civil Infrastruct Eng 30(5):359–375CrossRefGoogle Scholar
  36. 36.
    Zimmerman AT, Lynch JP (2009) A parallel simulated annealing architecture for model updating in wireless sensor networks. IEEE Sens J 9(11):1503–1510CrossRefGoogle Scholar
  37. 37.
    Whelan MJ (2011) Design and application of a wireless sensor network for vibration-based performance assessment of a tied arch bridge. In: Chang F-K (ed) Structural Health monitoring 2011: condition-based maintenance and intelligent structures. Lancaster, DEStech Publications Inc, pp 709–716Google Scholar
  38. 38.
    Whelan M, Janoyan K (2008) Design of a robust, high-rate wireless sensor network for static and dynamic structural monitoring. J Intell Mater Syst Struct 20:849–863CrossRefGoogle Scholar
  39. 39.
    Xia Y, Chen B, Weng S, Ni Y-Q, Xu Y-L (2012) Temperature effect on vibration properties of civil structures: a literature review and case studies. J Civil Struct Health Monit 2(1):29–46CrossRefGoogle Scholar
  40. 40.
    Van Overschee P, DeMoor B (1996) Subspace identification for linear systems. Kluwer Academic Press, DordrechtCrossRefGoogle Scholar
  41. 41.
    Brownjohn J, Magalhaes F, Caetano E, Cunha A (2010) Ambient vibration re-testing and operational modal analysis of the humber bridge. Eng Struct 32(8):2003–2018CrossRefGoogle Scholar
  42. 42.
    Allemang RJ (2003) The modal assurance criterion-twenty years of use and abuse. Sound Vib 37(8):14–23Google Scholar
  43. 43.
    Giraldo DF, Song W, Dyke SJ, Caicedo JM (2009) Modal identification through ambient vibration: comparative study. J Eng Mech 135(8):759–770CrossRefGoogle Scholar
  44. 44.
    Whelan M, Kernicky T, Zamudio N (2015) Structural identification of large finite element models using commodity computing clusters for parallel genetic algorithms. In: Structural health monitoring 2015: system reliability for verification and implementationGoogle Scholar
  45. 45.
    Friswell M, Mottershead JE (1995) Finite element model updating in structural dynamics. Springer, New YorkCrossRefzbMATHGoogle Scholar
  46. 46.
    Janter T, Sas P (1990) Uniqueness aspects of model-updating procedures. AIAA J 28(3):538–543CrossRefzbMATHGoogle Scholar
  47. 47.
    Zárate BA, Caicedo JM (2008) Finite element model updating: multiple alternatives. Eng Struct 30(12):3724–3730CrossRefGoogle Scholar
  48. 48.
    Jaishi B, Kim H-J, Kim MK, Ren W-X, Lee S-H (2007) Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility. Mech Syst Signal Process 21(6):2406–2426CrossRefGoogle Scholar
  49. 49.
    Friswell M, Penny J, Garvey S (1998) A combined genetic and eigensensitivity algorithm for the location of damage in structures. Comput Struct 69(5):547–556CrossRefzbMATHGoogle Scholar
  50. 50.
    Hao H, Xia Y (2002) Vibration-based damage detection of structures by genetic algorithm. J Comput Civil Eng 16(3):222–229MathSciNetCrossRefGoogle Scholar
  51. 51.
    Goller B, Beck J, Schueller G (2011) Evidence-based identification of weighting factors in bayesian model updating using modal data. J Eng Mech 138(5):430–440CrossRefGoogle Scholar
  52. 52.
    Kernicky T, Whelan M, Rauf U, Al-Shaer E (2017) Structural identification using a nonlinear constraint satisfaction processor with interval arithmetic and contractor programming. Comput Struct 188:1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Matthew Whelan
    • 1
  • Neal Salas Zamudio
    • 1
  • Timothy Kernicky
    • 1
  1. 1.University of North Carolina at Charlotte9201 University City Blvd.CharlotteUSA

Personalised recommendations