Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: the case study of the Podestà palace in Montelupone (Italy)


In October 2016, two major earthquakes occurred in Marche region in the Centre of Italy, causing widespread damage. The epicentre of the second one struck Norcia, Visso and Accumoli and a lot of damages to cultural heritage were done in the cities of Tolentino, San Severino, Camerino, Matelica, Macerata and Montelupone, where are located the Podestà Palace and the Civic Tower investigated in this paper. The main aim of this research is the determination of modal properties of these historical masonry constructions using experimental and numerical studies. The experimental analysis was based on ambient vibration survey, while numerical analysis was based on finite element analysis with solid elements. The results of the experimental study were used to tune the numerical model of the structure. As the most doubtful parameters, the modulus of elasticity of the masonry and the interaction among structural parts were adjusted to achieve the experimental results with numerical model by simple operations. Obtaining good consistency between the experimental and numerical analyses, the study revealed the actual dynamic properties of the damaged palace.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Gentile C, Saisi A (2007) Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr Build Mater 21:1311–1321. doi:10.1016/j.conbuildmat.2006.01.007

    Article  Google Scholar 

  2. 2.

    De Stefano A, Matta E, Clemente P (2016) Structural health monitoring of historical heritage in Italy: some relevant experiences. J Civil Struct Health Monit 6:83–106. doi:10.1007/s13349-016-0154-y

    Article  Google Scholar 

  3. 3.

    Rainieri C, Fabbrocino G, Verderame GM (2013) Non-destructive characterization and dynamic identification of a modern heritage building for serviceability seismic analyses. NDT&E Int 60:17–31. doi:10.1016/j.ndteint.2013.06.003

    Article  Google Scholar 

  4. 4.

    Ramos LF, Marques L, Lourenço PB et al (2010) Monitoring historical masonry structures with operational modal analysis: two case studies. Mech Syst Signal Process 24:1291–1305. doi:10.1016/j.ymssp.2010.01.011

    Article  Google Scholar 

  5. 5.

    DPCM (2011) Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme tecniche per le costruzioni di cui al decreto del Ministero delle infrastrutture e dei trasporti del 14 gennaio 2008. S.O. n. 217/L (in Italian)

  6. 6.

    Pierdicca A, Clementi F, Isidori D et al (2016) Numerical model upgrading of a historical masonry palace monitored with a wireless sensor network. Int J Mason Res Innov 1:74. doi:10.1504/IJMRI.2016.074748

    Article  Google Scholar 

  7. 7.

    Pierdicca A, Clementi F, Maracci D et al (2015) Vibration-based SHM of ordinary buildings: detection and quantification of structural damage. In: ASME Proceedings (ed) ASME 2015 International design engineering technical conferences & computers and information in engineering conference. American Society of Mechanical Engineers, Boston, pp V008T13A098–V008T13A098

  8. 8.

    Pierdicca A, Clementi F, Maracci D et al (2016) Damage detection in a precast structure subjected to an earthquake: a numerical approach. Eng Struct 127:447–458. doi:10.1016/j.engstruct.2016.08.058

    Article  Google Scholar 

  9. 9.

    Milani G, Valente M (2015) Comparative pushover and limit analyses on seven masonry churches damaged by the 2012 Emilia-Romagna (Italy) seismic events: possibilities of non-linear finite elements compared with pre-assigned failure mechanisms. Eng Fail Anal 47:129–161. doi:10.1016/j.engfailanal.2014.09.016

    Article  Google Scholar 

  10. 10.

    Acito M, Bocciarelli M, Chesi C, Milani G (2014) Collapse of the clock tower in Finale Emilia after the May 2012 Emilia Romagna earthquake sequence: numerical insight. Eng Struct 72:70–91. doi:10.1016/j.engstruct.2014.04.026

    Article  Google Scholar 

  11. 11.

    Betti M, Orlando M, Vignoli A (2011) Static behaviour of an Italian Medieval Castle: damage assessment by numerical modelling. Comput Struct 89:1956–1970. doi:10.1016/j.compstruc.2011.05.022

    Article  Google Scholar 

  12. 12.

    Catinari F, Pierdicca A, Clementi F, Lenci S (2017) Identification and calibration of the structural model of historical masonry building damaged during the 2016 Italian earthquakes: the case study of Palazzo del Podestà in Montelupone. In: 13th international conference on computational methods for coupled problems in science and engineering—ICCMSE 2017, pp 1–4

  13. 13.

    Clementi F, Gazzani V, Poiani M et al (2017) Seismic assessment of a monumental building through nonlinear analyses of a 3D solid model. J Earthq Eng. doi:10.1080/13632469.2017.1297268

    Google Scholar 

  14. 14.

    Cavalagli N, Gusella V (2015) Dome of the Basilica of Santa Maria Degli Angeli in Assisi: static and dynamic assessment. Int J Archit Herit 9:157–175. doi:10.1080/15583058.2014.951799

    Article  Google Scholar 

  15. 15.

    Alvandi A, Cremona C (2006) Assessment of vibration-based damage identification techniques. J Sound Vib 292:179–202. doi:10.1016/j.jsv.2005.07.036

    Article  Google Scholar 

  16. 16.

    Ellis BR (1998) Non-destructive dynamic testing of stone pinnacles on the palace of Westminster. Proc ICE Struct Build 128:300–307. doi:10.1680/istbu.1998.30464

    Article  Google Scholar 

  17. 17.

    Pieraccini M, Dei D, Betti M et al (2014) Dynamic identification of historic masonry towers through an expeditious and no-contact approach: application to the “Torre del Mangia” in Siena (Italy). J Cult Herit 15:275–282. doi:10.1016/j.culher.2013.07.006

    Article  Google Scholar 

  18. 18.

    Ubertini F, Cavalagli N, Kita A, Comanducci G (2017) Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM. Bull Earthq Eng. doi:10.1007/s10518-017-0222-7

    Google Scholar 

  19. 19.

    Ubertini F, Comanducci G, Cavalagli N et al (2017) Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mech Syst Signal Process 82:307–322. doi:10.1016/j.ymssp.2016.05.025

    Article  Google Scholar 

  20. 20.

    Ubertini F, Comanducci G, Cavalagli N (2016) Vibration-based structural health monitoring of a historic bell-tower using output-only measurements and multivariate statistical analysis. Struct Heal Monit 15:438–457. doi:10.1177/1475921716643948

    Article  Google Scholar 

  21. 21.

    Cavalagli N, Comanducci G, Ubertini F (2017) Earthquake-induced damage detection in a monumental masonry bell-tower using long-term dynamic monitoring data. J Earthq Eng 13632469(2017):1323048. doi:10.1080/13632469.2017.1323048

    Google Scholar 

  22. 22.

    Pierdicca A, Clementi F, Mezzapelle P et al (2017) One-year monitoring of a reinforced concrete school building: evolution of dynamic behavior during retrofitting works. Procedia Eng 199:2238–2243. doi:10.1016/j.proeng.2017.09.206

    Article  Google Scholar 

  23. 23.

    Bartoli G, Betti M, Giordano S (2013) In situ static and dynamic investigations on the “Torre Grossa” masonry tower. Eng Struct 52:718–733. doi:10.1016/j.engstruct.2013.01.030

    Article  Google Scholar 

  24. 24.

    Zonta D, Glisic B, Adriaenssens S (2014) Value of information: impact of monitoring on decision-making. Struct Control Heal Monit 21:1043–1056. doi:10.1002/stc.1631

    Article  Google Scholar 

  25. 25.

    Das S, Saha P, Patro SK (2016) Vibration-based damage detection techniques used for health monitoring of structures: a review. J Civil Struct Heal Monit 6:477–507. doi:10.1007/s13349-016-0168-5

    Article  Google Scholar 

  26. 26.

    Formisano A (2016) Theoretical and numerical seismic analysis of masonry building aggregates: case studies in San Pio Delle Camere (L’Aquila, Italy). J Earthq Eng. doi:10.1080/13632469.2016.1172376

    Google Scholar 

  27. 27.

    Doglioni C, Anzidei M, Pondrelli S, Florindo F (2016) The Amatrice seismic sequence: preliminary data and results. Ann Geophys 59:1–4. doi:10.4401/ag-7373

    Google Scholar 

  28. 28.

    Lavecchia G, Castaldo R, de Nardis R et al (2016) Ground deformation and source geometry of the 24 August 2016 Amatrice earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural-geological data. Geophys Res Lett 43:12389–12398. doi:10.1002/2016GL071723

    Article  Google Scholar 

  29. 29.

    Luca S, Billi A, Carminati E et al (2017) Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy. Tectonophysics 712–713:156–169. doi:10.1016/j.tecto.2017.05.014

    Google Scholar 

  30. 30.

    Galli P, Peronace E, Bramerini F et al (2016) The MCS intensity distribution of the devastating 24 August 2016 earthquake in central Italy (Mw 62). Ann Geophys. doi:10.4401/ag-7287

    Google Scholar 

  31. 31.

    Quagliarini E, D’Orazio M, Stazi A (2006) Rehabilitation and consolidation of high-value “camorcanna” vaults with FRP. J Cult Herit 7:13–22. doi:10.1016/j.culher.2005.09.002

    Article  Google Scholar 

  32. 32.

    Foti D, Diaferio M, Giannoccaro NI, Mongelli M (2012) Ambient vibration testing, dynamic identification and model updating of a historic tower. NDT&E Int 47:88–95. doi:10.1016/j.ndteint.2011.11.009

    Article  Google Scholar 

  33. 33.

    Van Overschee P, De Moor B (1996) Subspace identification for linear systems (theory—implementation—applications). Springer, Dordrecht. doi:10.1007/978-1-4613-0465-4

  34. 34.

    Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13:855–878. doi:10.1006/mssp.1999.1249

    Article  Google Scholar 

  35. 35.

    Singh JP, Agarwal P, Kumar A, Thakkar SK (2014) Identification of modal parameters of a multistoried rc building using ambient vibration and strong vibration records of Bhuj earthquake, 2001. J Earthq Eng 18:444–457. doi:10.1080/13632469.2013.856823

    Article  Google Scholar 

  36. 36.

    Ewins DJ (1984) Modal testing: theory and practice. Res Stud Press Ltd., Taunton. doi:10.1098/rsta.2000.0711

  37. 37.

    Van Overschee P, De Moor B (1996) Subspace identification for linear systems. Kluwer, London. doi:10.1007/978-1-4613-0465-4

  38. 38.

    Rainieri C, Fabbrocino G (2011) Operational modal analysis for the characterization of heritage structures. Geofizika 28:109–126

    Google Scholar 

  39. 39.

    Quagliarini E, Maracchini G, Clementi F (2017) Uses and limits of the equivalent frame model on existing unreinforced masonry buildings for assessing their seismic risk: a review. J Build Eng 10:166–182. doi:10.1016/j.jobe.2017.03.004

    Article  Google Scholar 

  40. 40.

    Ministro dei Lavori Pubblici e dei Trasporti (2008) DM 14/01/2008—Norme tecniche per le costruzioni (in Italian). Suppl. Ordin. Gazz. Uff. n. 29

  41. 41.

    Ministero dei Lavori Pubblici e dei Trasporti (2009) Circolare 2 febbraio 2009, n. 617—Istruzioni per l’applicazione delle “Nuove Norme Tecniche per le Costruzioni” di cui al Decreto Ministeriale del 14/01/2008 (in Italian)

  42. 42.

    Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Springer, New York. doi:10.1007/978-94-015-8508-8

  43. 43.

    Aras F, Krstevska L, Altay G, Tashkov L (2011) Experimental and numerical modal analyses of a historical masonry palace. Constr Build Mater 25:81–91. doi:10.1016/j.conbuildmat.2010.06.054

    Article  Google Scholar 

  44. 44.

    Krstevska L, Tashkov L, Naumovski N et al (2010) In-situ experimental testing of four historical buildings damaged during the 2009 L’Aquila earthquake. In: COST ACTION C26 urban habitat construction under catastrophic events—proceedings of the final conference, pp 427–432

  45. 45.

    Formisano A, Florio G, Landolfo R, Mazzolani FM (2015) Numerical calibration of an easy method for seismic behaviour assessment on large scale of masonry building aggregates. Adv Eng Softw 80:116–138. doi:10.1016/j.advengsoft.2014.09.013

    Article  Google Scholar 

  46. 46.

    Faggiano B, Marzo A, Formisano A, Mazzolani FM (2009) Innovative steel connections for the retrofit of timber floors in ancient buildings: a numerical investigation. Comput Struct 87:1–13. doi:10.1016/j.compstruc.2008.07.005

    Article  Google Scholar 

Download references


The authors wish to acknowledge the Municipal office of Montelupone (Macerata—Italy), the Mayor Mr. Rolando Pecora, the Head of the technical office Mr. Antonio Spaccesi and the assistant of the technical office Mr. Andrea Pesaola for theirs valuable helps during the preparation of this work. The authors wish also to acknowledge the DRCDiagnostic Research Company for its support during this work.

Author information



Corresponding author

Correspondence to A. Formisano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clementi, F., Pierdicca, A., Formisano, A. et al. Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: the case study of the Podestà palace in Montelupone (Italy). J Civil Struct Health Monit 7, 703–717 (2017).

Download citation


  • Structural health monitoring
  • Cultural heritage
  • Masonry towers
  • Damage