Journal of Civil Structural Health Monitoring

, Volume 7, Issue 5, pp 657–668 | Cite as

Dynamic monitoring system for utility-scale wind turbines: damage detection and fatigue assessment

  • Gustavo OliveiraEmail author
  • Filipe Magalhães
  • Álvaro Cunha
  • Elsa Caetano
Original Paper


Wind turbines are designed to last about 20 years. However, information regarding the actual structural condition of the wind turbine throughout this period is very limited or even null. This situation prevents the exploitation of the full potential of the support structure of the turbine, including the extension of its period of life. This paper presents an overview of a dynamic monitoring system developed to monitor the structural integrity of utility-scale wind turbines. This monitoring system, based on automated techniques of operational modal analysis, aims to deliver important information regarding the actual condition of the wind turbine: early detection of structural changes (i.e. damage) and evaluation of fatigue condition of the support structure. In this paper, a special focus is given to the latter.


OMA Wind turbine Damage detection Fatigue estimation 



The authors would like to acknowledge: (1) all the financial support provided by the Portuguese Foundation for Science and Technology (FCT) to ViBest/FEUP in the framework of the Project Dynamic Behaviour Monitoring for Structural Safety Assessment/National Network of Geophysics (National Programme for Scientific Re-equipment) (2) the Ph.D. Scholarship (SFRH/BD/79328/2011) provided by FCT to the first author; (3) the support given by INEGI, the wind turbine manufacturer Senvion and the wind turbine owner Cavalum.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    The European Wind Energy Association (EWEA) (2016) Wind in power—2015 European statisticsGoogle Scholar
  2. 2.
    The European Wind Energy Association (EWEA) (2016) The European offshore wind industry—key trends and statistics 2015Google Scholar
  3. 3.
    Hu W-H, Thöns S, Rohrmann RG, Said S, Rücker W (2015) Vibration-based structural health monitoring of a wind turbine system. Part I: resonance phenomenon. Eng Struct 89:260–272. doi: 10.1016/j.engstruct.2014.12.034 CrossRefGoogle Scholar
  4. 4.
    Devriendt C, Magalhães F, Weijtjens W, Sitter GD, Cunha Á, Guillaume P (2014) Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct Health Monit 13(6):644–659. doi: 10.1177/1475921714556568 CrossRefGoogle Scholar
  5. 5.
    Oliveira G, Magalhães F, Cunha Á, Caetano E (2016) Development and implementation of a continuous dynamic monitoring system in a wind turbine. J Civil Struct Health Monit 6:343. doi: 10.1007/s13349-016-0182-7 CrossRefGoogle Scholar
  6. 6.
    Iliopoulos A, Weijtjens W, Van Hemelrijck D, Devriendt C (2017) Fatigue assessment of offshore wind turbines on monopile foundations using multi-band modal expansion. Wind Energy 20(8):1463–1479CrossRefGoogle Scholar
  7. 7.
    Veljkovic M, Heistermann C, Husson W, Limam M, Feldmann M, Naumes J, Pak D, Faber T, M. Klose, Fruhner K-U, Krutschinna L, Baniotopoulos C, Lavasas I, Pontes A, Ribeiro E, Hadden M, Sousa R, Silva L, Rebelo C, Simoes R, Henriques J, Matos R, Nuutinen J, Kinnunen H (2012) High-strength tower in steel for wind turbines (Histwin). LuxembourgGoogle Scholar
  8. 8.
    Magalhães F, Cunha Á (2011) Explaining operational modal analysis with data from an arch bridge. Mech Syst Signal Process 25:1431–1450CrossRefGoogle Scholar
  9. 9.
    Peeters B, Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6):855–878CrossRefGoogle Scholar
  10. 10.
    Overschee P, Moor B (1996) Subspace identification for linear systems. Theory, implementation, applications. Kluwer Academic Publishers, DordrechtCrossRefzbMATHGoogle Scholar
  11. 11.
    Peeters B, Van Der Auweraer H, Guillaume P, Leuridan J (2004) The PolyMAX frequency-domain method: a new standard for modal parameters estimation? Shock Vib 11:395–409CrossRefGoogle Scholar
  12. 12.
    Allemang RJ (2003) The modal assurance criterion—twenty years of use and abuse. Sound Vib. 37(8):14–23Google Scholar
  13. 13.
    Magalhães F, Cunha Á, Caetano E (2009) Online automatic identification of the modal parameters of a long span arch bridge. Mech Syst Signal Process 23(2):316–332CrossRefGoogle Scholar
  14. 14.
    Oliveira G (2016) Vibration-based structural health monitoring of wind turbines. PhD thesis. University of Porto, Faculty of Engineering. Porto, PortugalGoogle Scholar
  15. 15.
    Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis. Prentice Hall, New JerseyzbMATHGoogle Scholar
  16. 16.
    Magalhães F, Cunha Á, Caetano E (2012) Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mech Syst Signal Process 28:212–228CrossRefGoogle Scholar
  17. 17.
    Pelayo F, López-Aenlle M, Fernández-Canteli, A, Cantieni R (2011) Operational modal analysis of two wind turbines with foundation problems. In: Proceedings of 4th International Operational Modal Analysis Conference (IOMAC). Istanbul, TurkeyGoogle Scholar
  18. 18.
    Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW Reference Wind Turbine for Offshore System Development National Renewable Energy LaboratoryGoogle Scholar
  19. 19.
    Larsen T, Hansen A (2007) How 2 HAWC2, the user’s manual. Risø National Laboratory, RoskildeGoogle Scholar
  20. 20.
    HAWC2 web site (2016) HAWC2 model—NREL 5-MW Reference Wind Turbine.
  21. 21.
    European Committee for Standardization (CEN) (2005) EN 1993-1-9 Eurocode 3: Design of steel structures—Part 1–9: FatigueGoogle Scholar
  22. 22.
    Guideline GW, Lioyd G (2010) Guideline for the certification of wind turbines. Germanischer, HamburgGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Faculty of Engineering (FEUP), Construct/ViBestUniversity of PortoPortoPortugal

Personalised recommendations