Journal of Civil Structural Health Monitoring

, Volume 6, Issue 1, pp 129–139

Piezoelectric active sensing system for crack detection in concrete structure

  • Chen Zhang
  • Xun Yu
  • Lee Alexander
  • Ye Zhang
  • Rajesh Rajamani
  • Navneet Garg
Original Paper

Abstract

This paper presents an active piezoelectric sensing system for concrete crack detection that is based on the energy diffusivity method. The feasibility of using the energy diffusivity of ultrasound to characterize the structural integrity of a pavement is first analyzed. Experiments are then carried out to evaluate the performance of this approach to crack detection. In addition, the detectable range of this system is studied by testing it with cuttings at different angles and different distances between sensor and actuator. Results show that by analyzing the energy diffusivity density of the sensor responses, cracks in the concrete specimen can be detected. This crack detection system can be used in highway and airport pavement slabs for pavement health monitoring applications.

Keywords

Piezoelectric Active sensing system Energy diffusivity Detectable range Pavement health monitoring 

References

  1. 1.
    Fujita Y, Mitani Y, Hamamoto Y (2006) A method for crack detection on a concrete structure. In: The 18th international conference on pattern recognitionGoogle Scholar
  2. 2.
    Fujita Y, Hamamoto Y (2011) A robust automatic crack detection method from noisy concrete surface. Mach Vis Appl 22:245–254CrossRefGoogle Scholar
  3. 3.
    Ito A, Aoki Y, Hashimoto S (2002) Accurate extraction and measurement of fine cracks from concrete block surface image. Ind Electron Soc 3:2202–2207Google Scholar
  4. 4.
    Abdel-Qader I, Abudayyeh O, Kelly ME (2003) Analysis of edge-detection techniques for crack identification in bridges. J Comput Civil Eng 7(4):255–263CrossRefGoogle Scholar
  5. 5.
    Seung-Nam Yu, Jang J-H, Han C-S (2006) Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Auto Constr 16(2007):255–261Google Scholar
  6. 6.
    Yamaguchi T, Hashimoto S (2006) Automated crack detection for concrete surface image using percolation model and edge information. In: IEEE industrial electronics, IECON 2006, 32nd annual conference on, 3355–3360Google Scholar
  7. 7.
    Sinha SK, Fieguth PW (2006) Automated detection of cracks in buried concrete pipe images. Auto Constr 15(2006):58–72CrossRefGoogle Scholar
  8. 8.
    Song G, Haihang G, Mo Y-L (2008) Smart aggregates: multi-functional sensor for concrete structures-a tutorial and a review. Smart Mater Struct 17(2008):1–17Google Scholar
  9. 9.
    Gu H, Moslehy Y, Sanders D, Song G, Mo YL (2010) Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations. Smart Mater Struct 19:065026 (, p 7)CrossRefGoogle Scholar
  10. 10.
    Quinn W, Kelly G, Barrett J (2012) Development of an embedded wireless sensing system for the monitoring of concrete. Struct Health Monit 11:381–392CrossRefGoogle Scholar
  11. 11.
    Zhang Y (2006) In situ fatigue crack detection using piezoelectric paint sensor. J Intell Mater Syst Struct 2006(17):843CrossRefGoogle Scholar
  12. 12.
    Chong KP, Carino NJ, Washer G (2003) Health monitoring of civil infrastructures. Smart Mater Struct 12(2003):483–493CrossRefGoogle Scholar
  13. 13.
    Shin SW et al (2008) Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete. Smart Mater Struct 17:1–8CrossRefGoogle Scholar
  14. 14.
    Wait JR, Park G, Farrar CR (2005) Integrated structural health assessment using piezoelectric active sensors. Shock Vib 12(6):389–405CrossRefGoogle Scholar
  15. 15.
    Park S, Ahmad S, Yun C-B, Roh Y (2006) Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp Mech 46:609–618CrossRefGoogle Scholar
  16. 16.
    Zhu J, He L (2011) Piezoelectric actuator/sensor wave propagation based nondestructive active monitoring method of concrete structures. J Wuhan Univ Technol Mater 26(3):541–547CrossRefGoogle Scholar
  17. 17.
    Zhu J, Gao C, He L (2012) Piezoelectric-based crack detection techniques of concrete structures: experimental study. J Wuhan Univ Technol Mater 27(2):346–352CrossRefGoogle Scholar
  18. 18.
    Anugonda P, Wiehn JS, Turner JA (2001) Diffusion of ultrasound in concrete. Ultrasonic J A 39(6):429–435CrossRefGoogle Scholar
  19. 19.
    Deroo F, Kim J-Y, Qu J, Sabra K, Jacobs LJ (2010) Detection of damage in concrete using diffuse ultrasound. J Acoust Soc Am 127(6):3315–3318CrossRefGoogle Scholar
  20. 20.
    Anugonda P, Wiehn JS, Turner JA (2001) Diffusion of ultrasound in concrete. Ultrasonics 39(2001):429–435CrossRefGoogle Scholar
  21. 21.
    Turner J (1998) Diffusion of ultrasound in concrete. J Acoust Soc Am 104(3):1790CrossRefGoogle Scholar
  22. 22.
    Ramamoorthy SK, Kane Y, Turner JA (2004) Ultrasound diffusion for crack depth determination in concrete. J Acoust Soc Am 115(2):523–529CrossRefGoogle Scholar
  23. 23.
    Weaver RL (1990) Diffusivity of ultrasound in polycrystals. J Mech Phys Solids 38(1):55–86MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Weaver RL (1998) Ultrasonics in an aluminum foam. Ultrasonics 36(1–5):435–442CrossRefGoogle Scholar
  25. 25.
    Kee S-H, Zhu J (2013) Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete. Smart Mater Struct 22:115016 (, p 11)CrossRefGoogle Scholar
  26. 26.
    Demirboga R, Turkmen I, Karakoc MB (2004) Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cem Concr Res 34(2004):2329–2336CrossRefGoogle Scholar
  27. 27.
    Ye G, Lura P, van Breugel K, Fraaij ALA (2004) Study on the development of the microstructure in cement-based materials by means of numerical simulation and ultrasonic pulse velocity measurement. Cement Concr Compos 26:491–497CrossRefGoogle Scholar
  28. 28.
    Schubert F, Koehler B (2004) Numerical time-domain simulation of diffusive ultrasound in concrete. Ultrasonics 42(1):781–786CrossRefGoogle Scholar
  29. 29.
    Casten RG, Holland CJ (1978) Instability results for reaction diffusion equations with Neumann boundary conditions. J Differ Equ 27(2):266–273MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2016

Authors and Affiliations

  • Chen Zhang
    • 1
  • Xun Yu
    • 1
    • 2
  • Lee Alexander
    • 3
  • Ye Zhang
    • 3
  • Rajesh Rajamani
    • 3
  • Navneet Garg
    • 4
  1. 1.Department of Mechanical and Energy EngineeringUniversity of North TexasDentonUSA
  2. 2.Department of Mechanical EngineeringNew York Institute of TechnologyOld WestburyUSA
  3. 3.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  4. 4.William J. Hughes Technical CenterFederal Aviation AdministrationAtlantic CityUSA

Personalised recommendations