Skip to main content

Integration-by-parts characterizations of Gaussian processes


The Malliavin integration-by-parts formula is a key ingredient to develop stochastic analysis on the Wiener space. In this article we show that a suitable integration-by-parts formula also characterizes a wide class of Gaussian processes, the so-called Gaussian Fredholm processes.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29, 766–801 (2001)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Barbour, A.D.: Stein’s method for diffusion approximations. Probab. Theory Relat. Fields 84, 297–322 (1990)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Coutin, L., Decreusefond, L.: Stein’s method for Brownian approxima- tions. Commun. Stoch. Anal. 7, 349–372 (2013)

    MathSciNet  Google Scholar 

  4. 4.

    Gross, L.: Abstract Wiener spaces. In: Proceedings of Fifth Berkeley Symposium, Mathematics of Statistics and Probability, Vol. II: Contributions to Probability Theory, Part 1. Univ. California Press, Berkeley, pp. 31–42 (1967)

  5. 5.

    Hsu, E.P.: Characterization of Brownian motion on manifolds through integration by parts, in Stein’s method and applications. In: Volume 5 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Singapore Univ. Press, Singapore, pp. 195–208 (2005)

  6. 6.

    Kuo, H.-H., Lee, Y.-J.: Integration by parts formula and the Stein lemma on abstract Wiener space. Commun. Stoch. Anal. 5, 405–418 (2011)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  8. 8.

    Nualart, D.: The Malliavin Calculus and Related Topics, Probability and its Applications, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. 9.

    Nualart, D., Nualart, E.: Introduction to Malliavin calculus. Institute of Mathematical Statistics Textbooks, vol. 9. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  10. 10.

    Nualart, D., Saussereau, B.: Malliavin calculus for stochastioc differential equations driven by a fractional brownian motion. Stoch. Process. Appl. 119, 391–409 (2009)

    Article  Google Scholar 

  11. 11.

    Shih, H.-H.: On Stein’s method for infinite-dimensional Gaussian approximation in abstract Wiener spaces. J. Funct. Anal. 261, 1236–1283 (2011)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Sottinen, T., Viitasaari, L.: Fredholm representation of multiparameter Gaussian processes with applications to equivalence in law and series expansions. Mod. Stoch. Theory Appl. 2, 287–295 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Sottinen, T., Viitasaari, L.: Stochastic analysis of Gaussian processes via Fredholm representation. Int. J. Stoch. Anal. (2016).

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Sottinen, T., Yazigi, A.: Generalized Gaussian bridges. Stoch. Process. Appl. 124, 3084–3105 (2014)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Sun, X., Guo, F.: On integration by parts formula and characterization of fractional Ornstein–Uhlenbeck process. Stat. Probab. Lett. 107, 170–177 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Üstünel, A.S.: An Introduction to Analysis on Wiener Space. Springer, New York (1995)

    Book  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ciprian A. Tudor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azmoodeh, E., Sottinen, T., Tudor, C.A. et al. Integration-by-parts characterizations of Gaussian processes. Collect. Math. 72, 25–41 (2021).

Download citation


  • Gaussian processes
  • Malliavin calculus
  • Stein’s lemma

Mathematics Subject Classification

  • 60G15
  • 60G12
  • 60H07