Supercyclicity of weighted composition operators on spaces of continuous functions


Our study is focused on the dynamics of weighted composition operators defined on a locally convex space \(E\hookrightarrow (C(X),\tau _p)\) with X being a topological Hausdorff space containing at least two different points and such that the evaluations \(\{\delta _x:\ x\in X\}\) are linearly independent in \(E'\). We prove, when X is compact and E is a Banach space containing a nowhere vanishing function, that a weighted composition operator \(C_{w,\varphi }\) is never weakly supercyclic on E. We also prove that if the symbol \(\varphi \) lies in the unit ball of \(A(\mathbb {D})\), then every weighted composition operator can never be \(\tau _p\)-supercyclic neither on \(C(\mathbb {D})\) nor on the disc algebra \(A(\mathbb {D})\). Finally, we obtain Ansari–Bourdon type results and conditions on the spectrum for arbitrary weakly supercyclic operators, and we provide necessary conditions for a composition operator to be weakly supercyclic on the space of holomorphic functions defined in non necessarily simply connected planar domains. As a consequence, we show that no composition operator can be weakly supercyclic neither on the space of holomorphic functions on the punctured disc nor in the punctured plane.

This is a preview of subscription content, log in to check access.


  1. 1.

    Albanese, A., Jornet, D.: A note on supercyclic operators in locally convex spaces. Mediterr. J. Math. 16, 107 (2019).

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Aleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Oper. Theory 85(2), 259–287 (2016)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Ansari, S.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128(2), 374–383 (1995)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. 63, 195–207 (1997)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Bayart, F., Matheron, É.: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc. 49, 1–15 (2006)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  7. 7.

    Bermudo, S., Montes-Rodríguez, A., Shkarin, S.: Orbits of operators commuting with the Volterra operator. J. Math. Pures Appl. 89(2), 145–173 (2008)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Bernal-Rodríguez, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Theory Appl. 27(1), 47–56 (1995)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Bès, J.: Dynamics of weighted composition operators. Complex Anal. Oper. Theory 8, 159–176 (2014)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Bonet, J., Peris, A.: Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal. 159, 587–595 (1998)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Bourdon, P.S., Shapiro, J.S.: Cyclic Phenomena for Composition Operators, Mem. Am. Math. Soc. 125 (1997), no. 596, Providence, Rhode Island

  12. 12.

    Chan, K.C., Sanders, R.: A weakly hypercyclic operator that is not norm hypercyclic. J. Oper. Theory 52, 39–59 (2004)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Duggal, B.P.: Weak supercyclicity: dynamics of paranormal operators. Rend. Circ. Mat. Palermo 65(2), 297–306 (2016)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Fernández, C., Galbis, A., Jordá, E.: Dynamics and spectra of composition operators on the Schwartz space. J. Funct. Anal. 274(12), 3503–3530 (2018)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376 (2009)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)

    Google Scholar 

  17. 17.

    Garling, D.J.H.: A Course in Mathematical Analysis: Volume III, Complex analysis, Measure and Integration. Cambridge University Press, New York (2013)

    Google Scholar 

  18. 18.

    Garrido, M.I., Jaramillo, J.A.: Variations on the Banach–Stone theorem. In: IV Course on Banach spaces and Operators (Laredo, 2001), Extracta Math. 17, 351–383 (2002)

  19. 19.

    Gadgil, S.: Dynamics on the circle-interval dynamics and rotation number. Reson. J. Sci. Educ. 8(11), 25–36 (2003)

    Google Scholar 

  20. 20.

    Grosse-Erdmann, K.G., Peris, A.: Linear Chaos. Springer, Berlin (2011)

    Google Scholar 

  21. 21.

    Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376 (2009)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Gunatillake, G.: Invertible weighted composition operators. J. Funct. Anal. 261, 831–860 (2011)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Herrero, D.A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99(1), 179–190 (1991)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Hilden, H.M., Wallen, L.J.: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23, 557–565 (1974)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Kalmes, T.: Dynamics of weighted composition operators on function spaces defined by local properties. Studia Math. 249(3), 259–301 (2019)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Kamali, Z., Hedayatian, K., Khani Robati, B.: Non-weakly supercyclic weighted composition operators. Abstr. Appl. Anal. Art. (2010) ID 143808

  27. 27.

    Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)

    Google Scholar 

  28. 28.

    Liang, Y.X., Zhou, Z.H.: Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Iran. Math. Soc. 41(1), 121–139 (2015)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton (2006)

    Google Scholar 

  30. 30.

    Montes-Rodríguez, A., Rodríguez-Martínez, A., Shkarin, S.: Cyclic behaviour of Volterra composition operators. Proc. Lond. Math. Soc. 103(3), 535–562 (2011)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Montes-Rodríguez, A., Shkarin, S.: Non-weakly supercyclic operators. J. Oper. Theory 58(1), 39–62 (2007)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Moradi, A., Khani Robati, B., Hedayatian, K.: Non-weakly supercyclic classes of weighted composition operators on Banach spaces of analytic functions. Bull. Belg. Math. Soc. Simon Stevin 24(2), 227–241 (2017)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Peris, A.: Multi-hypercyclic operators are hypercyclic. Math. Z. 236(4), 779–786 (2001)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Sanders, R.: Weakly supercyclic operators. J. Math. Anal. Appl. 292, 148–159 (2004)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Sanders, R.: An isometric bilateral shift that is weakly supercyclic. Integr. Equ. Oper. Theory 53, 547–552 (2005)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Shapiro, J.H.: Composition Operators and Classical Function Theory. Universitext. Tracts in Mathematics. Springer, New York (1993)

    Google Scholar 

  37. 37.

    Shapiro, J.H.: Simple connectivity and linear chaos. Rend. Circ. Mat. Palermo (2) Suppl 56, 27–48 (1998)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Shkarin, S.: Non-sequential weak supercyclicity and hypercyclicity. J. Funct. Anal. 242(1), 37–77 (2007)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    de Welington, M., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993)

    Google Scholar 

  40. 40.

    Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators. Proc. Am. Math. Soc. 135(10), 3263–3271 (2007)

    MathSciNet  MATH  Google Scholar 

Download references


The authors are very thankful to the referee for his/her careful reading of the manuscript and his/her valuable comments and observations. The first and the second author were supported by MEC, MTM2016-76647-P. The third author was supported by MEC, MTM2016-75963-P and GVA/2018/110.

Author information



Corresponding author

Correspondence to E. Jordá.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beltrán-Meneu, M.J., Jordá, E. & Murillo-Arcila, M. Supercyclicity of weighted composition operators on spaces of continuous functions. Collect. Math. 71, 493–509 (2020).

Download citation


  • Weighted composition operator
  • Weak supercyclicity
  • Disc algebra
  • Space of holomorphic functions

Mathematics Subject Classification

  • 47A16
  • 47B33
  • 46E15