Skip to main content
Log in

Abstract

We prove a sharp common generalization of endpoint multilinear Kakeya and local discrete Brascamp–Lieb inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, J., Bez, N., Gutiérrez, S.: Transversal multilinear Radon-like transforms: local and global estimates. Rev. Mat. Iberoam. 29(3), 765–788 (2013). https://doi.org/10.4171/RMI/739

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, J., Carbery, A., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261–302 (2006). https://doi.org/10.1007/s11511-006-0006-4. arXiv:math/0509262

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain, J., Demeter, C.: The proof of the \(l^2\) decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015). https://doi.org/10.4007/annals.2015.182.1.9. arXiv:1403.5335 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Demeter, C.: A study guide for the \(l^2\) decoupling theorem. Chin. Ann. Math. Ser. B 38(1), 173–200 (2017). https://doi.org/10.1007/s11401-016-1066-1. arXiv:1604.06032 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math. (2) 184(2), 633–682 (2016). https://doi.org/10.4007/annals.2016.184.2.7. arXiv:1512.01565 [math.NT]

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett, J., et al.: Stability of the Brascamp–Lieb constant and applications. Am. J. Math. 140(2), 543–569 (2018). https://doi.org/10.1353/ajm.2018.0013. arXiv:1508.07502 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennett, J., et al.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17(5), 1343–1415 (2008). https://doi.org/10.1007/s00039-007-0619-6. arXiv:math/0505065

    Article  MathSciNet  MATH  Google Scholar 

  8. Bennett, J., et al.: Finite bounds for Hölder–Brascamp–Lieb multilinear inequalities. Math. Res. Lett. 17(4), 647–666 (2010). https://doi.org/10.4310/MRL.2010.v17.n4.a6. arXiv:math/0505691

    Article  MathSciNet  MATH  Google Scholar 

  9. Bennett, J., et al.: Behaviour of the Brascamp–Lieb constant. Bull. Lond. Math. Soc. 49(3), 512–518 (2017). https://doi.org/10.1112/blms.12049. arXiv:1605.08603 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239–1295 (2011). https://doi.org/10.1007/s00039-011-0140-9. arXiv:1012.3760 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  11. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20(2), 151–173 (1976). https://doi.org/10.1016/0001-8708(76)90184-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Carbery, A., Hänninen, T. S., Valdimarsson, S.I.: Multilinear duality and factorisation for Brascamp–Lieb-type inequalities with applications. Preprint (2018). arXiv:1809.02449 [math.FA]

  13. Carbery, A., Valdimarsson, S.I.: The endpoint multilinear Kakeya theorem via the Borsuk–Ulam theorem. J. Funct. Anal. 264(7), 1643–1663 (2013). https://doi.org/10.1016/j.jfa.2013.01.012. arXiv:1205.6371 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  14. Finner, H.: A generalization of Hölder’s inequality and some probability inequalities. Ann. Probab. 20(4), 1893–1901 (1992)

    Article  MathSciNet  Google Scholar 

  15. Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998). ISBN: 978-0-387-98549-7. https://doi.org/10.1007/978-1-4612-1700-8

  16. Garg, A., et al.: Algorithmic and optimization aspects of Brascamp–Lieb inequalities, via operator scaling. Geom. Funct. Anal. 28(1), 100–145 (2018). https://doi.org/10.1007/s00039-018-0434-2. arXiv:1607.06711 [cs.CC]

    Article  MathSciNet  MATH  Google Scholar 

  17. Guth, L.: The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture. Acta Math. 205(2), 263–286 (2010). https://doi.org/10.1007/s11511-010-0055-6. arXiv:0811.2251 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  18. Guth, L.: A short proof of the multilinear Kakeya inequality. Math. Proc. Cambr. Philos. Soc. 158(1), 147–153 (2015). https://doi.org/10.1017/S0305004114000589. arXiv:1409.4683 [math.AP]

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, S., Zorin-Kranich, P.: Decoupling for moment manifolds associated to Arkhipov–Chubarikov–Karatsuba systems. Adv. Math. (2019). https://doi.org/10.1016/j.aim.2019.106889

  20. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience Publishers, Inc., New York (1948)

  21. Lieb, E.H.: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102(1), 179–208 (1990). https://doi.org/10.1007/BF01233426

    Article  MathSciNet  MATH  Google Scholar 

  22. Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Am. Math. Soc 55, 961–962 (1949). https://doi.org/10.1090/S0002-9904-1949-09320-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Maldague, D.: Weak Hölder–Brascamp–Lieb inequalities. Preprint (2019). arXiv:1904.06450 [math.CA]

  24. Matouek, J.: Using the Borsuk–Ulam theorem. Universitext. Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler. Springer, Berlin (2003). ISBN: 3-540-00362-2. https://doi.org/10.1007/978-3-540-76649-0

  25. Rogers, C.A., Shephard, G.C.: Convex bodies associated with a given convex body. J. Lond. Math. Soc. 33, 270–281 (1958). https://doi.org/10.1112/jlms/s1-33.3.270

    Article  MathSciNet  MATH  Google Scholar 

  26. Schep, A.R.: Factorization of positive multilinear maps. Illinois J. Math. 28(4), 579–591 (1984)

    Article  MathSciNet  Google Scholar 

  27. Zhang, R.: The endpoint perturbed Brascamp–Lieb inequalities with examples. Anal. PDE 11(3), 555–581 (2018). https://doi.org/10.2140/apde.2018.11.555. arXiv:1510.09132 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The extension of Theorem 1.3 beyond the scale-invariant case (1.9) is motivated by ongoing joint work with Shaoming Guo and Ruixiang Zhang. This work was partially supported by the Hausdorff Center for Mathematics (DFG EXC 2047). I thank the anonymous referees for numerous corrections and helpful suggestions pertaining to exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Zorin-Kranich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorin-Kranich, P. Kakeya–Brascamp–Lieb inequalities. Collect. Math. 71, 471–492 (2020). https://doi.org/10.1007/s13348-019-00273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-019-00273-2

Mathematics Subject Classification

Navigation