Collectanea Mathematica

, Volume 69, Issue 1, pp 39–64 | Cite as

On polynomials with given Hilbert function and applications

  • Alessandra Bernardi
  • Joachim Jelisiejew
  • Pedro Macias Marques
  • Kristian Ranestad


Using Macaulay’s correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.


Cactus rank Artinian Gorenstein local algebra 

Mathematics Subject Classification

Primary 13H10 Secondary 14Q15 14C05 



JJ and KR thank Jarosław Buczyński for fruitful discussions and the Homing Plus programme of Foundation for Polish Science, co-financed from European Union, Regional Development Fund for partial support of their mutual visits. PMM thanks Anthony Iarrobino and Jerzy Weyman for the invitation and hospitality at Northeastern University, and is grateful to Anthony Iarrobino for having introduced him to this subject and for very fruitful discussions. He also thanks James Adler for help with language. AB was partially supported by Project Galaad of INRIA Sophia Antipolis Méditerranée, France, Marie Curie Intra-European Fellowships for Carrer Development (FP7-PEOPLE-2009-IEF): “DECONSTRUCT”, GNSAGA of INDAM, Mathematical Department Giuseppe Peano of Turin, Italy, and Politecnico of Turin, Italy. JJ is a doctoral fellow at the Warsaw Center of Mathematics and Computer Science financed by the Polish program KNOW and by Polish National Science Center, Project 2014/13/N/ST1/02640 and a member of “Computational complexity, generalised Waring type problems and tensor decompositions” Project within “Canaletto”, the executive program for scientific and technological cooperation between Italy and Poland, 2013-2015. PMM was partially supported by Fundação para a Ciência e Tecnologia, Projects “Geometria Algébrica em Portugal”, PTDC/MAT/099275/2008, “Comunidade Portuguesa de Geometria Algébrica”, PTDC/MAT-GEO/0675/2012, and sabbatical leave Grant SFRH/BSAB/1392/2013, by CIMA—Centro de Investigação em Matemática e Aplicações, Universidade de Évora, Projects PEst-OE/MAT/UI0117/2011 and PEst-OE/MAT/UI0117/2014, and by Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant 2014/12558–9. KR was supported by the RCN Project No 239015 “Special Geometries”.


  1. 1.
    Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Alg. Geom. 4(2), 201–222 (1995)MathSciNetMATHGoogle Scholar
  2. 2.
    Bernardi, A., Brachat, J., Mourrain, B.: A comparison of different notions of ranks of symmetric tensors. Linear Algebra Appl. 460, 205–230 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bernardi, A., Ranestad, K.: On the cactus rank of cubics forms. J. Symb. Comput. 50, 291–297 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Buczyńska, W., Buczyński, J.: Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. J. Algebr. Geom. 23(1), 63–90 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Casnati, G., Notari, R.: On the irreducibility and the singularities of the Gorenstain locus of the punctual Hilbert scheme of degree 10. J. Pure Appl. Algebra 215(6), 1243–1254 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Casnati, G., Notari, R.: A structure theorem for 2-stretched Gorenstein algebras. J. Commut. Algebra. 8(3), 295–335 (2016)Google Scholar
  7. 7.
    Casnati, G., Jelisiejew, J., Roberto, N.: Irreducibility of the Gorenstein loci of Hilbert schemes via ray families. Algebr. Number Theory 9(7), 1525–1570 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012)CrossRefMATHGoogle Scholar
  9. 9.
    Emsalem, J.: Géométrie des points épais. Bull. Soc. Math. Fr. 106(4), 399–416 (1978)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Iarrobino, A.: Associated graded algebra of a Gorenstein Artin Algebra. Mem. Am. Math. Soc. 107(514) (1994) Am. Math. Soc. ProvidGoogle Scholar
  11. 11.
    Iarrobino, A.: Inverse system of a symbolic power. II. The waring problem for forms. J. Algebra 174(3), 1091–1110 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Iarrobino, A., Kanev, V.: Power Sums, Gorentein Algebras and Determinantal Loci, Lecture Notes in Mathematics, vol. 1721. Springer, Berlin (1999)Google Scholar
  13. 13.
    Jelisiejew, J.: Classifying Local Artinian Gorenstein Algebras. Collect. Math. 68(1), 101–127 (2017)Google Scholar
  14. 14.
    Macaulay, F.S.: Some properties of enumeration in the theory of modular systems. Proc. Lond. Math. Soc. S2–26(1), 531–555 (1927)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di TrentoPovoItaly
  2. 2.Faculty of Mathematics, Informatics, and MechanicsUniversity of WarsawWarszawaPoland
  3. 3.Departamento de Matemática, Escola de Ciências e Tecnologia, Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação AvançadaUniversidade de ÉvoraÉvoraPortugal
  4. 4.Matematisk instituttUniversitetet i OsloBlindernNorway

Personalised recommendations