Collectanea Mathematica

, Volume 68, Issue 2, pp 251–263 | Cite as

De Branges functions of Schroedinger equations

  • A. BaranovEmail author
  • Y. Belov
  • A. Poltoratski


We characterize the Hermite–Biehler (de Branges) functions E which correspond to Schroedinger operators with \(L^2\) potential on the finite interval. From this characterization one can easily deduce a recent theorem by Horvath. We also obtain a result about location of resonances.


Entire Function Dirichlet Boundary Condition Exponential Type Canonical System Characterization Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the referee for numerous helpful remarks and, especially, for suggesting a simplified proof of Statement 1 in Theorem 3.


  1. 1.
    Abakumov, E., Baranov, A., Belov, Y.: Localization of zeros for Cauchy transforms. Int. Math. Res. Not. 2015, 6699–6733 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chelkak, D.: An application of the fixed point theorem to the inverse Sturm–Liouville problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 370 (2009). [English transl. in J. Math. Sci. 166(1), 118–126 (2010)]Google Scholar
  3. 3.
    de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs (1968)zbMATHGoogle Scholar
  4. 4.
    Dym, H., McKean, H.P.: Gaussian Processes, Function Theory and the Inverse Spectral Problem. Academic Press, New York (1976)zbMATHGoogle Scholar
  5. 5.
    Hitrik, M.: Bounds on scattering poles in one dimension. Commun. Math. Phys. 208(2), 381–411 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Horváth, M.: Inverse spectral problems and closed exponential systems. Ann. Math. 162(2), 885–918 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Iantchenko, A., Korotyaev, E.: Resonances for Dirac operators on the half-line. J. Math. Anal. Appl. 420(1), 279–313 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Korotyaev, E.: Inverse resonance scattering on the half line. Asymptot. Anal. 37(3–4), 215–226 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lagarias, J.: Zero spacing distributions for differenced L-functions. Acta Arith. 120(2), 159–184 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lagarias, J.: The Schrödinger operator with Morse potential on the right half line. Commun. Number Theory Phys. 3(2), 323–361 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Levin, B.Ya.: Distribution, of Zeros of Entire Functions. Am. Math. Soc., Providence (1964). [Revised edition: Am. Math. Soc., Providence (1980)]Google Scholar
  12. 12.
    Marchenko, V.A.: Certain problems in the theory of second-order differential operators. Dokl. Akad. Nauk SSSR 72, 457–460 (1950). (Russian)Google Scholar
  13. 13.
    Marchenko, V.A.: Some questions in the theory of one-dimensional linear differential operators of the second order. I, Trudy Moskov. Mat. Ob. 1, 327–420 (1952). [English transl. in Am. Math. Soc. Transl. (2) 101, 1–104 (1973)]Google Scholar
  14. 14.
    Makarov, N., Poltoratski, A.: Meromorphic inner functions, Toeplitz kernels, and the uncertainty principle. In: Perspectives in Analysis, Carleson’s Special Volume. Springer, Berlin (2005)Google Scholar
  15. 15.
    Poshel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, New York (1987)Google Scholar
  16. 16.
    Remling, C.: Schrödinger operators and de Branges spaces. J. Funct. Anal. 196, 323–394 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Romanov, R.: Canonical systems and de Branges spaces. arXiv:1408.6022
  18. 18.
    Romanov, R.: Order problem for canonical systems and a conjecture of Valent. Trans. Am. Math. Soc. arXiv:1502.04402
  19. 19.
    Simon, B.: Resonances in one dimension and Fredholm determinants. J. Funct. Anal. 178(2), 396–420 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2016

Authors and Affiliations

  1. 1.Department of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Chebyshev LaboratorySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations