Skip to main content
Log in

Intersection theory on linear subvarieties of toric varieties

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We give a complete description of the cohomology ring \(A^*(\overline{Z})\) of a compactification of a linear subvariety \(Z\) of a torus in a smooth toric variety whose fan \(\Sigma \) is supported on the tropicalization of \(Z\). It turns out that cocycles on \(\overline{Z}\) canonically correspond to Minkowski weights on \(\Sigma \) and that the cup product is described by the intersection product on the tropical matroid variety \({{\mathrm{Trop}}}(Z)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allermann, L., Rau, J.: First steps in tropical intersection theory. Math. Z. 264(3), 633–670 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brion, M.: Equivariant Chow groups for torus actions. Transf. Gr. 2(3), 225–267 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Sel. Math. New Ser. 1(3), 459–494 (1995)

    Article  MATH  Google Scholar 

  4. David, C., John, L., Hal, S.: Toric Varieties. Am. Math. Soc, Providence, RI (2011)

  5. Eisenbud, D., Harris, J.: 3264 and all that: Intersection theory in algebraic geometry. To be published (2013)

  6. Ewald, G.: Combinatorial convexity and algebraic geometry. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  7. Feichtner, E.M., Yuzvinsky S.: Chow rings of toric varieties defined by atomic lattices. Invent. Math. 155(3), 515–536 (2004)

  8. François, G.: Cocycles on tropical varieties via piecewise polynomials. Proc. Am. Math. Soc. 141(2), 481–497 (2013)

    Article  MATH  Google Scholar 

  9. François, G., Rau, J.: The diagonal of tropical matroid varieties and cycle intersections. Collect. Math. 64(2), 185–210 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fulton, W., MacPherson, R.: Categorical framework for the study of singular spaces. Mem. Am. Math. Soc. 31(243) (1981)

  11. Fulton, W.: Introduction to toric varieties. The 1989 William H. Roever lectures in geometry. Annals of mathematics studies. Princeton University Press, Princeton (1993)

  12. Fulton, W., MacPherson, R., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J. Algebraic Geom. 4(1), 181–193 (1995)

    MATH  MathSciNet  Google Scholar 

  13. Fulton, W., Sturmfels, B.: Intersection theory on toric varieties. Topology 36(2), 335–353 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fulton, W.: Intersection theory. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  15. Gubler, W.: A guide to tropicalizations. Algebraic and combinatorial aspects of tropical geometry. volume 589 of contemporary mathematics. Am. Math. Soc. RI, pp. 125–189 (2013)

  16. Hacking, P., Keel, S., Tevelev, J.: Compactification of the moduli space of hyperplane arrangements. J. Algebr. Geom. 15(4), 657–680 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hacking, P., Keel, S., Tevelev, J.: Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces. Invent. Math. 178(1), 173–227 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kajiwara, T.: Tropical toric geometry. In: Toric Topology, volume 460 of Contemp. Math. Am. Math. Soc. RI, pp. 197–207 (2008)

  19. Katz, E., Payne, S.: Realization spaces for tropical fans. Combinatorial aspects of commutative algebra and algebraic geometry. The abel symposium 2009, volume 6 of Abel Symposia, Springer, Berlin, pp. 73–88 (2011)

  20. Katz, E., Payne, S.: Piecewise polynomials, Minkowski weights, and localization on toric varieties. Algebra Number Theory 2(2), 135–155 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Katz, E.: Tropical intersection theory from toric varieties. Collect. Math. 63(1), 29–44 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maclagan, D., Sturmfels, B.: Introduction to tropical geometry, volume 161 of graduate studies in mathematics. American Mathematical Society, RI (2015)

  23. Maclagan, D., Thomas, R.R.: Computational algebra and combinatorics of toric ideals. In: Commutative Algebra and Combinatorics, volume 4 of Ramanujan Math. Soc. Lect. Notes Ser. Ramanujan Math. Soc., Mysore. With the co-operation of Faridi, S., Gold, L., Jayanthan, A.V., Khetan, A., Puthenpurakal, T (2007)

  24. Osserman, B., Payne, S.: Lifting tropical intersections. Doc. Math. 18, 121–175 (2013)

    MATH  MathSciNet  Google Scholar 

  25. Payne, S.: Equivariant Chow cohomology of toric varieties. Math. Res. Lett. 13(1), 29–41 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16(3), 543–556 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rau, J.: Intersections on tropical moduli spaces (2008) arXiv:0812.3678v1

  28. Shaw, K.M.: A tropical intersection product in matroidal fans. SIAM J. Discrete Math. 27(1), 459–491 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sturmfels, B., Tevelev, J.: Elimination theory for tropical varieties. Math. Res. Lett. 15(3), 543–562 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tevelev, J.: Compactifications of subvarieties of tori. Am. J. Math. 129(4), 1087–1104 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Totaro B.: Chow groups, Chow cohomology, and linear varieties. Forum Math. Sigma, 2:e17 (25 pages) (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, A. Intersection theory on linear subvarieties of toric varieties. Collect. Math. 66, 175–190 (2015). https://doi.org/10.1007/s13348-014-0129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-014-0129-4

Keywords

Navigation