Skip to main content
Log in

An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We address the integrability aspects of the Zhiber-Shabat equation that serves as a generalised version of the \(\Phi -4\) equation which is related to relativistic quantum mechanics. Three methods of integration are applied to this nonlinear evolution equation, namely the travelling-wave approach, Lie group method and the invariance-multiplier approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anco, S.C., Bluman, G.W.: Direct construction method for conservation laws of partial differential equations Part I: examples of conservation law classifications. Eur. J. Appl. Math. 13, 545–566 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Azad, H., Mustafa, M.T.: Symmetry analysis of wave equation on sphere. J. Math. Anal. Appl. 333, 1180–1188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biazar, J., Ayati, Z.: Expansion method for related equations to the Zhiber-Shabat equation. Glob. J. Math. Anal. 1, 97–103 (2013)

    Google Scholar 

  4. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  5. Borhanifar, A., Moghanlu, A.Z.: Application of the \((G^{\prime }/G)\)-expansion method for the Zhiber-Shabat equation and other related equations. Math. Comp. Model. 54, 2109–2116 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, A.: Huang, w, Li, J.: Qualitative behavior and exact travelling wave solutions of the Zhiber-Shabat equation. J. Comput. Appl. Math. 230, 559–569 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheviakov, A.F.: GeM software package for computation of symmetries and conservation laws of differential equations. Comp. Phys. Commun. 176, 48–61 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chowdhury, A., Biswas, A.: Singular solitons and numerical analysis of \(\Phi \)-four equation. Math. Sci. 6, (2012). doi:10.1186/2251-7456-6-42

  9. Davodi, A.G., Ganji, D.D.: Travelling wave solutions to the Zhiber-Shabat and related equations using rational hyperbolic method. Adv. Appl. Math. Mech. 2, 118–130 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Degasperis, A., Fordy, A.P., Lakshmanan, M.: Nonlinear Evolution Equations: Integrability and Spectral Methods. Manchester University Press, Manchester (1990)

    MATH  Google Scholar 

  11. Ding, Y., He, B., Li, W.: A improved F-expansion method and its application to the Zhiber-Shabat equation. Math. Methods Appl. Sci. 35, 466–473 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Freire, I.L.: On the paper “Symmetry analysis of wave equation on sphere” by H. Azad and M.T. Mustafa. J. Math. Anal. Appl. 367, 716–720 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Freire, I.L., Faleiros, A.C.: Lie point symmetries and some group invariant solutions of the quasilinear equation involving the infinity Laplacian. Nonlinear Anal. TMA 74, 3478–3486 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Göktas, U., Hereman, W.: Computation of conservation laws for nonlinear lattices. Physica D 123, 425–436 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. He, B., Long, Y., Rui, W.: New exact bounded travelling wave solutions for the Zhiber-Shabat equation. Nonlinear Anal. TMA 71, 1636–1648 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hereman, W.: Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions. Int. J. Quant. Chem. 106, 278–299 (2006)

    Article  MATH  Google Scholar 

  17. Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Reidel, Dordrecht (1985)

    Book  MATH  Google Scholar 

  18. Kocak, H.: On the review of solutions of Zhiber-Shabat equation. World Appl. Sci. J. 10, 675–684 (2010)

    Google Scholar 

  19. Liu, H., Li, J., Zhang, Q.: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation. J. Comput. Appl. Math. 228, 1–9 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, Y., Wang, D.-S.: Symmetry analysis of the option pricing model with dividend yield from financial markets. Appl. Math. Lett. 24, 481–486 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Morris, R., Kara, A.H., Chowdhury, A., Biswas, A.: Soliton solutions, conservation laws, and reductions of certain classes of nonlinear wave equations. Z. Naturforsch. A Phys. Sci. 67, 613–620 (2012)

    Google Scholar 

  22. Morris, R., Masemola, P., Kara, A.H., Biswas, A.: On symmetries, reductions, conservation laws and conserved quantities of optical solitons with inter-modal dispersion. Optik 124, 5116–5123 (2013)

    Article  Google Scholar 

  23. Naz, R.: Conservation laws for some compacton equations using the multiplier approach. Appl. Math. Lett. 25, 257–261 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  25. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  26. Tang, Y., Xu, W., Shen, J., Gao, L.: Bifurcations of travelling wave solutions for Zhiber-Shabat equation. Nonlinear Anal. TMA 67, 648–656 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, C., Du, X.: Classifying travelling wave solutions to the Zhiber-Shabat equation. J. Appl. Math. Phys. 1, 1–3 (2013)

    Article  Google Scholar 

  28. Wang, Y.F., Tian, B., Wang, P., Li, M., Jiang, Y.: Bell-polynomial approach and soliton solutions for the Zhiber-Shabat equation and (2+1)-dimensional Gardner equation with symbolic computation. Nonlinear Dyn. 69, 2031–2040 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wazwaz, A.-M.: The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equations. Comm. Nonlinear Sci. Numer. Simul. 13, 584–592 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wazwaz, A.-M.: Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Beijing (2009)

    Book  MATH  Google Scholar 

  31. Yang, H.-X., Li, Y.-Q.: Prolongation approach to Bäcklund transformation of Zhiber-Mikhailov-Shabat equation. J. Math. Phys. 37, 3491–3497 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zheng, S.: Nonlinear Evolution Equations, Vol. 133 of Monographs and Surveys in Pure and Applied Mathematics. CRC Press, Boca Raton (2004).

Download references

Acknowledgments

The authors would like to thank all the reviewers for their list of comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Morris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, R.M., Kara, A.H. & Biswas, A. An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws. Collect. Math. 67, 55–62 (2016). https://doi.org/10.1007/s13348-014-0121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-014-0121-z

Keywords

Mathematics Subject Classification

Navigation