Collectanea Mathematica

, Volume 65, Issue 3, pp 303–330 | Cite as

Tangential varieties of Segre–Veronese varieties

Article

Abstract

We determine the minimal generators of the ideal of the tangential variety of a Segre–Veronese variety, as well as the decomposition into irreducible \({GL}\)-representations of its homogeneous coordinate ring. In the special case of a Segre variety, our results confirm a conjecture of Landsberg and Weyman.

Keywords

Tangential varieties Segre varieties Veronese varieties 

Mathematics Subject Classification (1991) 

14L30 15A69 15A72 

References

  1. 1.
    Abo, H., Brambilla, M.C.: On the dimensions of secant varieties of Segre–Veronese varieties. Ann. Mat. Pura Appl. (4) 192(1), 61–92 (2013). doi:10.1007/s10231-011-0212-3 CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Atiyah, M.F.: A note on the tangents of a twisted cubic. Proc. Camb. Philos. Soc. 48, 204–205 (1952)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ballico, E., Bernardi, A.: Tensor ranks on tangent developable of Segre varieties. Linear Multilinear Algebra 61(7), 881–894 (2013). doi:10.1080/03081087.2012.716430 CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Brion, Michel, Spherical varieties, 2 (Zürich, 1994), pp. 753–760. Birkhäuser, Basel (1995)Google Scholar
  5. 5.
    Catanese, F., Wajnryb, B.: The 3-cuspidal quartic and braid monodromy of degree 4 coverings. Projective varieties with unexpected properties, pp. 113–129. Walter de Gruyter GmbH & Co. KG, Berlin (2005)Google Scholar
  6. 6.
    Eisenbud, D.: Green’s conjecture: an orientation for algebraists, (Sundance, UT, 1990). Research Notes Mathematics, vol. 2, pp. 51–78. Jones and Bartlett, Boston, MA (1992)Google Scholar
  7. 7.
    Fulton, W., Hansen, J.: A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings. Ann. Math. (2) 110(1), 159–166 (1979). doi:10.2307/1971249 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129. Springer, New York (1991). (A first course; Readings in Mathematics)Google Scholar
  9. 9.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants, and multidimensional determinants. Mathematics: Theory and Applications. Birkhäuser, Boston, MA (1994)Google Scholar
  10. 10.
    Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
  11. 11.
    Holtz, O., Sturmfels, B.: Hyperdeterminantal relations among symmetric principal minors. J. Algebra 316(2), 634–648 (2007). doi:10.1016/j.jalgebra.2007.01.039 CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Landsberg, J.M.: Tensors: Geometry and Applications, Graduate Studies in Mathematics, vol. 128. American Mathematical Society, Providence, RI (2012)Google Scholar
  13. 13.
    Landsberg, J.M., Weyman, J.: On tangential varieties of rational homogeneous varieties. J. Lond. Math. Soc. (2) 76(2), 513–530 (2007). doi:10.1112/jlms/jdm075 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Landsberg, J.M., Weyman, J.: On the ideals and singularities of secant varieties of Segre varieties. Bull. Lond. Math. Soc. 39(4), 685–697 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (1995). (With contributions by A. Zelevinsky; Oxford Science Publications)MATHGoogle Scholar
  16. 16.
    Oeding, Luke: Set-theoretic defining equations of the tangential variety of the Segre variety. J. Pure Appl. Algebra 215(6), 1516–1527 (2011). doi:10.1016/j.jpaa.2010.09.009 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Oeding, Luke: Set-theoretic defining equations of the variety of principal minors of symmetric matrices. Algebra Number Theory 5(1), 75–109 (2011). doi:10.2140/ant.2011.5.75 CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Raicu, C., Stillman, M.: SchurRings: a package for computing with symmetric functions (2011). Available at http://www.math.princeton.edu/craicu/M2/SchurRings
  19. 19.
    Raicu, Claudiu: Secant varieties of Segre–Veronese varieties. Algebra Number Theory 6(8), 1817–1868 (2012). doi:10.2140/ant.2012.6.1817 CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Raicu, Claudiu: Products of Young symmetrizers and ideals in the generic tensor algebra. J. Algebraic Combin. 39(2), 247–270 (2014). doi:10.1007/s10801-013-0447-8 CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Sam, S., Snowden, A.: GL-equivariant modules over polynomial rings in infinitely many variables. (2012) arXiv:1206.2233
  22. 22.
    Sam, S., Snowden, A.: Introduction to twisted commutative algebras. (2012). arXiv:1209.5122
  23. 23.
    Snowden, A.: Syzygies of Segre embeddings and \(\Delta \)-modules. Duke Math. J. 162(2), 225–277 (2013). doi: 10.1215/00127094-1962767 CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Srinivasiengar, C.N.: On the quartic developable. J. Indian Math. Soc. (N. S.) 6, 127–130 (1942)MATHMathSciNetGoogle Scholar
  25. 25.
    Sturmfels, Bernd, Zwiernik, P.: Binary cumulant varieties. Ann. Comb. 17(1), 229–250 (2013). doi:10.1007/s00026-012-0174-1 CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Weyman, J.: Cohomology of Vector Bundles Band Syzygies, Cambridge Tracts in Mathematics, vol. 149. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  27. 27.
    Zak, F.L.: Tangents and secants of algebraic varieties. Translations of Mathematical Monographs, vol. 127. American Mathematical Society, Providence (1993). Translated from the Russian manuscript by the author. 1234494 (94i:14053)Google Scholar

Copyright information

© Universitat de Barcelona 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA
  3. 3.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  4. 4.Department of Mathematics and Statistics Auburn UniversityAuburnUSA

Personalised recommendations