Skip to main content
Log in

An Arakelov tautological boundary divisor on \({{\overline{\mathcal{M}}_{1,1}}}\)

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We define a natural singular hermitian metric \({\|\cdot\|_{s}}\) (s > 0) on the boundary divisor \({{\delta=\mathcal{O}(\partial\mathcal{M}_{1,1})}}\) of the moduli stack of 1-pointed stable curves of genus 1, \({{\overline{\mathcal{M}}_{1,1}}}\) . For s > 3/2 we prove that \({\|\cdot\|_{s}}\) is a log-singular hermitian metric in the sense of Burgos–Kramer–Kühn, with singularities along \({{\partial\mathcal{M}_{1,1}}}\) . We compute the arithmetic intersection number of \({(\delta,\|\cdot\|_{s})}\) with the first tautological hermitian line bundle \({\overline{\kappa}_{1,1}}\) on \({{\overline{\mathcal{M}}_{1,1}.}}\) The result involves the special values \({{\zeta^{\prime}(-1), \zeta^{\prime}(-2)}}\) and \({{\zeta(2, s)}}\), where \({\zeta(s)}\) is Riemann’s zeta function and \({\zeta(\sigma,s)}\) is Hurwitz’ zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L.V.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math. 74, 171–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bost J.-B.: Potential theory and Lefschetz theorems for arithmetic surfaces. Ann. Scient. Éc. Norm. Sup. 32, 241–312 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Bost, J.-B.: Intersection theory on arithmetic surfaces and \({L_{1}^{2}}\) metrics. Letter dated March (1998)

  4. Burgos J.I., Kramer J., Kühn U.: Cohomological arithmetic Chow rings. J. Inst. Math. Jussieu. 6, 1–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgos J.I., Kramer J., Kühn U.: Arithmetic characteristic classes of automorphic vector bundles. Documenta Math. 10, 619–716 (2005)

    MATH  Google Scholar 

  6. Buser P.: Geometry and spectra of compact Riemann surfaces. In: Progress in Mathematics, vol. 106. Birkhäuser, Boston Inc., Boston (1992)

    Google Scholar 

  7. Elkik R.: Fibrés d’intersection et intégrales de classes de Chern. Ann. Scient. Éc. Norm. Sup. 22, 195–226 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Freixas i Montplet, G.: Généralisations de la théorie de l’intersection arithmétique. Thèse de doctorat, Orsay (2007)

  9. Freixasi Montplet G.: Heights and metrics with logarithmic singularities. J. für die Reine Angew. Math. 627, 97–153 (2009)

    Article  MathSciNet  Google Scholar 

  10. Freixasi Montplet G.: An arithmetic Riemann–Roch theorem for pointed stable curves. Ann. Scient. Éc. Norm. Sup. 42, 337–372 (2009)

    MathSciNet  Google Scholar 

  11. Knudsen F.F.: The projectivity of the moduli space of stable curves II, III. Math. Scand. 52, 161–212 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Kudla S., Rapoport M., Yang T.: Modular forms and special cycles on Shimura curves. In: Ann.of Math.Studies. Princeton Univ.Press, New Jersey (2005)

    Google Scholar 

  13. Kühn U.: Generalized arithmetic intersection numbers. J. Reine Angew. Math. 534, 209–236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Masur H.: Extension of the Weil–Petersson metric to the boundary of Teichmüller space. Duke. Math. J. 43, 623–635 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu K., Sun X., Yau S.-T.: Canonical metrics on the moduli space of Riemann surfaces I. J. Differ. Geom. 68, 571–637 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Mumford D.: Hirzebruch’s proportionality theorem in the non-compact case. Invent. Math. 42, 239–272 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. McShane G.: Simple geodesics and a series constant over Teichmüller space. Invent. math. 132, 607–632 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mirzakhani M.: Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. math. 167, 179–222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mirzakhani M.: Growth of the number of simple closed geodesics on hyperbolic surfaces. Ann. Math. 168, 97–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schulze M.: On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry. J. Funct. Anal. 236, 120–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wolpert S.A.: The length spectra as moduli for Riemann surfaces. Ann. Math. 109, 323–351 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wolpert S.A.: The Fenchel–Nielsen deformation. Ann. Math. 115, 501–528 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wolpert S.A.: On the symplectic geometry of deformation of a hyperbolic surface. Ann. Math. 117, 207–234 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolpert S.A.: On the Weil–Petersson geometry of the moduli space of curves. Am. J. Math. 107, 969–997 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wolpert S.A.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. math. 89, 119–145 (1986)

    Article  MathSciNet  Google Scholar 

  26. Wolpert S.A.: The hyperbolic metric and the geometry of the universal curve. J. Differ. Geom. 31, 417–472 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Wolpert, S.A.: Convexity of geodesic-length functions: a reprise, in spaces of Kleinian groups. In: Misnky, Y., Sakuma, M., Series, C. (eds.) Lond. Math. Soc. Lec. Notes. Cambridge University Press, Cambridge (2004)

  28. Wolpert S.A.: Behavior of geodesic-length functions on Teichmüller space. J. Differ. Geom. 79, 234–277 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Freixas i Montplet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freixas i Montplet, G. An Arakelov tautological boundary divisor on \({{\overline{\mathcal{M}}_{1,1}}}\) . Collect. Math. 63, 243–259 (2012). https://doi.org/10.1007/s13348-012-0061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-012-0061-4

Keywords

Navigation