Skip to main content
Log in

On the generating functions of Mersenne and Fermat primes

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

With the aid of Solomon Golomb formula we give closed formulas for the generating functions of Mersenne and Fermat primes. A limit-type criteria for the existence of an infinite number of such primes is given using these generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Borwein, J.M., Borwein, P.B.: Pi and the AGM, Canadian Mathematical Society. Series of Monographs and Advanced Texts, vol. 4, New York (1987)

  2. Crandall R., Pomerance C.: Prime Numbers, A Computational Perspective. Springer, New York (2001)

    Google Scholar 

  3. Gillies D.B.: Three new Mersenne primes and a statistical theory. Math. Comput. 18, 93–97 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. Golomb S.W.: The lambda method in prime number theory. J. Number Theory 2, 193–198 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ligh S., Neal L.: A note on Mersenne numbers. Math. Mag. 47, 231–233 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Schroeder M.R.: Where is the next Mersenne prime hiding?. Math. Intelligencer 5, 31–33 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Titchmarsh E.C.: The theory of the Riemann zeta-function. The Clarendon Press, Oxford University Press, New York (1986)

    MATH  Google Scholar 

  8. Wagstaff S.S. Jr.: Prime numbers with a fixed number of one bits or zero bits in their binary representation. Experiment. Math. 10, 267–273 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Wagstaff S.S. Jr.: Divisors of Mersenne numbers. Math. Comput. 40, 385–397 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Panzone.

Additional information

Research supported in part by Conicet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panzone, P.A. On the generating functions of Mersenne and Fermat primes. Collect. Math. 63, 59–69 (2012). https://doi.org/10.1007/s13348-010-0019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-010-0019-3

Keywords

Mathematics Subject Classification (2000)

Navigation