Agan, A., & Starr, S. (2017). Ban the box, criminal records, and racial discrimination: A field experiment. The Quarterly Journal of Economics, 133, 191–235.
Google Scholar
Albrecht, S. V., & Stone, P. (2018). Autonomous agents modelling other agents: A comprehensive survey and open problems. Artificial Intelligence, 258, 66–95. https://doi.org/10.1016/j.artint.2018.01.002.
Article
Google Scholar
Amnesty International United Kingdom. (2018). Trapped in the matrix: Secrecy, stigma, and bias in the Met’s gangs database. https://reurl.cc/8lmnzy. .
Barton, A. (2013). How tobacco health warnings can Foster autonomy. Public Health Ethics, 6(2), 207–219.
Google Scholar
Behaghel, L., Crepon, B., & Le Barbanchon, T. (2015). Unintended effects of anonymous resumes. American Economic Journal: Applied Economics, 7, 1–27.
Google Scholar
Biggs, M. (2013). Prophecy, self-fulfilling/self-defeating. Encyclopedia of Philosophy and the Social Sciences. Inc: SAGE Publications. https://doi.org/10.4135/9781452276052.n292. isbn:9781412986892.
Botvinick, M., & Braver, T. (2015). Motivation and cognitive control. Annual Review of Psychology, 66(1), 83–113.
Google Scholar
Brownstein, M. (2018). The implicit mind: Cognitive architecture, the self, and ethics. New York, NY: Oxford University Press.
Google Scholar
Brownstein, M. (2019). Implicit bias. In E. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2019).
Burns, D., Parker, M., & Monteith, J. (2017). Self-regulation strategies for combating prejudice. In C. Sibley & F. Barlow (Eds.), The Cambridge Handbook of the Psychology of Prejudice (pp. 500–518).
Byrd, N. (2019). What we can (and can’t) infer about implicit bias from debiasing experiments. Synthese.
Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356, 183–186.
Google Scholar
Castelvecchi, D. (2016). Can we open the black box of AI? Nature, 538(7623), 20–23. https://doi.org/10.1038/538020a.
Article
Google Scholar
Chamorro-Premuzic, Tomas (2019). Will AI reduce gender bias in hiring? Harvard Business Review.
Clabaugh, C., & Matarić, M. (2018). Robots for the people, by the people. Science Robotics, 3(21).
Daumeyer, N. M., Onyeador, I. N., Brown, X., & Richeson, J. A. (2019). Consequences of attributing discrimination to implicit vs. explicit bias. Journal of Experimental Social Psychology, 84, 103812.
De Houwer, J. (2019). Implicit bias is behavior: A functional-cognitive perspective on implicit bias. Perspectives on Psychological Science, 14(5), 835–840.
Google Scholar
Devine, P. G., Forscher, P. S., Austin, A. J., & Cox, W. T. (2012). Long-term reduction in implicit race bias: A prejudice habit-breaking intervention. Journal of Experimental Social Psychology, 48(6), 1267–1278. https://doi.org/10.1016/j.jesp.2012.06.003.
Article
Google Scholar
Doshi-Velez, F., & Kortz, M. (2017). Accountability of AI under the law: The role of explanation. In Berkman Klein center working group on explanation and the law. Berkman Klein: Center for Internet & Society working paper.
Google Scholar
Dunham, C. R., & Leupold, C. (2020). Third generation discrimination: An empirical analysis of judicial decision making in gender discrimination litigation. DePaul J. for Soc. Just, 13.
Eightfold AI. (n.d). Talent Diversity. Retrieved from https://reurl.cc/EKp05m
Engelen, B., & Nys, T. (2020). Nudging and autonomy: Analyzing and alleviating the worries. Review of Philosophy and Psychology, 11(1), 137–156.
Google Scholar
Entelo. (n.d.). Entelo Platform Reports. Retrieved from https://reurl.cc/Gko62y
Equal Reality. (n.d.). Retrieved from https://equalreality.com/index
FitzGerald, C., Martin, A., Berner, D., & Hurst, S. (2019). Interventions designed to reduce implicit prejudices and implicit stereotypes in real world contexts: A systematic review. BMC Psychology, 7(1), 29. https://doi.org/10.1186/s40359-019-0299-7.
Article
Google Scholar
Floridi, L. (2015). The ethics of information. Oxford University Press.
Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review.
Foley, M., & Williamson, S. (2018). Does anonymising job applications reduce gender bias? Understanding managers’ perspectives. Gender in Management, 33(8), 623–635. https://doi.org/10.1108/GM-03-2018-0037.
Article
Google Scholar
Forscher, P. S., Mitamura, C., Dix, E. L., Cox, W. T., & Devine, P. G. (2017). Breaking the prejudice habit: Mechanisms, timecourse, and longevity. Journal of Experimental Social Psychology, 72, 133–146.
Google Scholar
Forscher, P. S., Lai, C. K., Axt, J. R., Ebersole, C. R., Herman, M., Devine, P. G., & Nosek, B. A. (2019). A meta-analysis of change in implicit bias. Journal of Personality and Social Psychology, 117, 522–559.
Google Scholar
Galinsky, A. D., & Moskowitz, G. B. (2000). Perspective-taking: Decreasing stereotype expression, stereotype accessibility, and in-group favoritism. Journal of Personality and Social Psychology, 78(4), 708.
Google Scholar
Garcia, M. (2016). Racist in the machine: The disturbing implications of algorithmic bias. World Policy Journal, 33(4), 111–117.
Google Scholar
Gollwitzer, P. M. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54(7), 493–503. https://doi.org/10.1037/0003-066X.54.7.493.
Article
Google Scholar
Hajian, S., Bonchi, F., & Castillo, C. (2016). Algorithmic bias: From discrimination discovery to fairness-aware data mining. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 2125-2126).
Haslanger, S. (2012). Resisting reality. Oxford: OUP.
Google Scholar
HireVue. (2019). CodeVue offers powerful new anti-cheating capability in coding assessment tests. Retrieved from https://reurl.cc/24D9An
HireVue. (n.d.). HireVue video interviewing software. Retrieved from https://reurl.cc/NapMKk
Hiscox, M. J., Oliver, T., Ridgway, M., Arcos-Holzinger, L., Warren, A., & Willis, A. (2017). Going blind to see more clearly: Unconscious bias in Australian public service shortlisting processes. Behavioural Economics Team of the Australian Government. https://doi.org/10.1016/j.jmrt.2015.05.003.
Hodson, G., Dovidio, F., & Gaertner, L. (2002). Processes in racial discrimination. Personality and Social Psychology Bulletin, 28(4), 460–471.
Google Scholar
Holpuch, A., & Solon, O. (2018, May 1). Can VR teach us how to deal with sexual harassment? In The Guardian Retrieved from https://reurl.cc/A1KreQ.
Holroyd, J., & Sweetman, J. (2016). The heterogeneity of implicit biases. In M. Brownstein & J. Saul (Eds.), Implicit Bias and philosophy, volume 1: Metaphysics and epistemology. Oxford University Press.
Huebner, B. (2016). Implicit bias, reinforcement learning, and scaffolded moral cognition. In M. Brownstein & J. Saul (Eds.), Implicit bias and philosophy (Vol. 1). Oxford: Oxford University Press.
Google Scholar
Human Rights Watch. (2019). World report, 2019 https://reurl.cc/6g641d. .
Hung, T.-w. (2020). A preliminary study of normative issues of AI prediction. EurAmerica, 50(2), 205–227.
Hung, T.-w. & Yen, Chun-pin (2020). On the person-based predictive policing of AI. Ethics and Information Technology. https://doi.org/10.1007/s10676-020-09539-x.
IBM Knowledge Center (n.d.). Retrieved from https://reurl.cc/W4k9DO
IEEE Global Initiative. (2016). Ethically aligned design. IEEE Standards, v1.
Interviewing.io. (n.d.) Retrieved from https://interviewing.io/
Jarrahi, M. (2018). Artificial intelligence and the future of work. Business Horizons, 61(4), 577–586.
Google Scholar
Krause, A., Rinne, U., & Zimmermann, K. (2012). Anonymous job applications in Europe. IZA Journal of European Labor Studies, 1(1), 5.
Google Scholar
Lai, C. K., & Banaji, M. (2019). The psychology of implicit intergroup bias and the prospect of change. In D. Allen & R. Somanathan (Eds.), Difference without domination: Pursuing justice in diverse democracies. Chicago, IL: University of Chicago Press.
Lai, C. K., Marini, M., Lehr, A., Cerruti, C., Shin, L., Joy-Gaba, A., et al. (2014). Reducing implicit racial preferences I. Journal of Experimental Psychology: General, 143(4), 1765.
Google Scholar
Lai, C. K., Skinner, L., Cooley, E., Murrar, S., Brauer, M., Devos, T., et al. (2016). Reducing implicit racial preferences II. Journal of Experimental Psychology: General, 145(8), 1001.
Google Scholar
Lara, F., & Deckers, J. (2019). Artificial intelligence as a Socratic assistant for moral enhancement. Neuroethics. https://doi.org/10.1007/s12152-019-09401-y.
Liao, S., & Huebner, B. (2020). Oppressive Things. Philosophy and Phenomenological Research. https://doi.org/10.1111/phpr.12701.
Lu, J., & Li, D. (2012). Bias correction in a small sample from big data. IEEE Transactions on Knowledge and Data Engineering, 25(11), 2658–2663.
Google Scholar
MacDorman, K. F., & Chattopadhyay, D. (2016). Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. Cognition., 146, 190–205.
Google Scholar
Machery, E. (2016). De-freuding implicit attitudes. In M. Brownstein & J. Saul (Eds.), Implicit bias and philosophy, Metaphysics and epistemology (Vol. 1, pp. 104–129). Oxford: Oxford University Press.
Google Scholar
Madary, M. & Metzinger, T.K. (2016). Real virtuality: A code of ethical conduct. Recommendations for good scientific practice and the consumers of VR-technology. Front. Robot. AI 3:3. https://doi.org/10.3389/frobt.2016.00003.
Madva, A. (2017). Biased against debiasing: On the role of (institutionally sponsored) self-transformation in the struggle against prejudice. Ergo, 4.
Madva, A., & Brownstein, M. (2018). Stereotypes, prejudice, and the taxonomy of the implicit social mind. Noûs, 52(3), 611–644.
Google Scholar
Miller, S. (2017). Institutional responsibility. In M. Jankovic & K. Ludwig (Eds.), The Routledge handbook of collective intentionality (pp. 338–348). New York: Routledge.
Google Scholar
Miller, S. (2018). Dual use science and technology, ethics and weapons of mass destruction. Springer.
Monteith, J., Woodcock, A., & Lybarger, E. (2013). Automaticity and control in stereotyping and prejudice. Oxford: OUP.
Google Scholar
Mori, M. (1970/2012). The uncanny valley (K. F. MacDorman & N. Kageki, trans.). IEEE Robotics and Automation, 19(2), 98–100. https://doi.org/10.1109/MRA.2012.2192811.
Mya. (n.d.). Meet Mya. Retrieved from https://mya.com/meetmya
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342.
Article
Google Scholar
Ofosu, E. K., Chambers, M. K., Chen, J. M., & Hehman, E. (2019). Same-sex marriage legalization associated with reduced implicit and explicit antigay bias. Proceedings of the National Academy of Sciences, 116, 8846-8851.
Paiva, A., Santos, P., & Santos, F. (2018). Engineering pro-sociality with autonomous agents. Proc of AAAI.
Google Scholar
Peck, T., Seinfeld, S., Aglioti, S., & Slater, M. (2013). Putting yourself in the skin of a black avatar reduces implicit racial bias. Consciousness and Cognition, 22(3), 779–787.
Google Scholar
Pymetrics. (n.d.). Retrieved from https://www.pymetrics.com
Régner, I., Thinus-Blanc, C., Netter, A., Schmader, T., & Huguet, P. (2019). Committees with implicit biases promote fewer women when they do not believe gender bias exists. Nature Human Behaviour, 1–9.
Richardson, R., Schultz, J., & Crawford, K. (2019). Dirty data, bad predictions: How civil rights violations impact police data, predictive policing systems, and justice. New York University Law Review, 94, 192–233.
Google Scholar
Samek, W., Wiegand, T., & Muller, K.-R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. ITU journal: ICT Discoveries, 1.
Saul, J. (2018). Should we tell implicit bias stories? Disputatio., 10(50), 217–244.
Google Scholar
Savulescu, J., & Maslen, H. (2015). Moral enhancement and artificial intelligence. Beyond Artificial Intelligence (pp. 79–95). In J. Romportl, E. Zackova, J. Kelemen (eds), Beyond artificial intelligence. Springer.
Schwitzgebel, E. (2013). A dispositional approach to attitudes: Thinking outside of the belief box. In N. Nottelmann (Ed.), New essays on belief. New York: Palgrave Macmillan.
Google Scholar
Seibt, J., & Vestergaard, C. (2018). Fair proxy communication. Research Ideas and Outcomes, 4, e31827.
Google Scholar
Sharda, R., Delen, D., & Turban, E. (2020). Analytics, data science, & artificial intelligence: Systems for decision support. Pearson.
Google Scholar
Sheridan, T. B. (2016). Human–robot interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 58(4), 525–532. https://doi.org/10.1177/0018720816644364.
Article
Google Scholar
Skewes, J., Amodio, D., & Seibt, J. (2019). Social robotics and the modulation of social perception and bias. Philosophical Transactions of the Royal Society B, 374(1771).
Snyder, M., Tanke, E. D., & Berscheid, E. (1977). Social perception and interpersonal behavior: On the self-fulfilling nature of social stereotypes. Journal of Personality and Social Psychology, 35, 655–666.
Google Scholar
Soon, V. (2019). Implicit bias and social schema. Philosophical Studies, 1–21.
Sue, D., Capodilupo, C., Torino, G., Bucceri, J., Holder, A., Nadal, K., & Esquilin, M. (2007). Racial microaggressions in everyday life. American Psychologist, 62(4), 271.
Google Scholar
Suresh, H., & Guttag, J. V. (2019). A framework for understanding unintended consequences of machine learning. arXiv preprint arXiv:1901.10002.
Surowiecki, J. (2005). The wisdom of crowds. New York, NY: Anchor Books.
Google Scholar
Sweeney, L. (2013). Discrimination in online ad delivery. Queue, 11(3).
Taddeo, M. (2019). Three ethical challenges of applications of artificial intelligence in cybersecurity. Minds and Machines, 29(2), 187–191.
Google Scholar
Taddeo, M., & Floridi, L. (2018). How AI can be a force for good. Science, 361(6404), 751–752.
Google Scholar
Tankard, M. E., & Paluck, E. L. (2017). The effect of a supreme court decision regarding gay marriage on social norms and personal attitudes. Psychological Science, 28, 1334–1344.
Google Scholar
Textio. (n.d.). Textio hire. Retrieved from https://textio.com/products/
Unbias.io. (n.d.) Retrieved from https://unbias.io/
Vantage Point. (n.d.). Retrieved from https://www.tryvantagepoint.com/
Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Transparent, explainable, and accountable AI for robotics.
Google Scholar
Winsberg, E., Huebner, B., & Kukla, R. (2014). Accountability and values in radically collaborative research. Studies in History and Philosophy of Science Part A, 46, 16–23.
Google Scholar
Zaleski, Katharine. (2016). Virtual reality could be a solution to sexism in tech. Retrieved from https://reurl.cc/vnezZk
Zheng, R. (2018). Bias, structure, and injustice: A reply to Haslanger. Feminist Philosophy Quarterly, 4(1).