The Digital Phenotype: a Philosophical and Ethical Exploration

  • Michele Loi
Research Article


The concept of the digital phenotype has been used to refer to digital data prognostic or diagnostic of disease conditions. Medical conditions may be inferred from the time pattern in an insomniac’s tweets, the Facebook posts of a depressed individual, or the web searches of a hypochondriac. This paper conceptualizes digital data as an extended phenotype of humans, that is as digital information produced by humans and affecting human behavior and culture. It argues that there are ethical obligations to persons affected by generalizable knowledge of a digital phenotype, not only those who are personally identifiable or involved in data generation. This claim is illustrated by considering the health-related digital phenotypes of precision medicine and digital epidemiology.


Information technologies Innovation Policy making Risk, biomedical data Big data Algorithms Discrimination Genotyping Microbiomics Digital epidemiology Infoveillance Infodemiology, feedback loop, holism 


  1. Aicardi, C., Savio Del L, Dove, E. S., Lucivero, F., Mittelstadt, B., Niezen, M., Prainsack, B., Reinsborough, M., and Sharon, T. (2016a). Shortcomings of the Revised ‘Helsinki Declaration’ on Ethical Use of Health Databases. The Hastings Center. November 2, 2016.
  2. Aicardi, C., Del Savio, L., Dove, E. S., Lucivero, F., Tempini, N., & Prainsack, B. (2016b). Emerging ethical issues regarding digital health data. On the world medical association draft declaration on ethical considerations regarding health databases and biobanks. Croatian Medical Journal, 57(2), 207–213.CrossRefGoogle Scholar
  3. Beauchamp, T. L., & Childress, J. F. (1994). Principles of biomedical ethics (4th ed.). USA: Oxford University Press.Google Scholar
  4. Boyd, D., & Crawford, K. (2012). Critical questions for big data. Information, Communication & Society, 15(5), 662–679.CrossRefGoogle Scholar
  5. Buchanan, A. (2007). Institutions, beliefs and ethics: Eugenics as a case study. Journal of Political Philosophy, 15(1), 22–45.CrossRefGoogle Scholar
  6. Carroll, A. B. (1991). The pyramid of corporate social responsibility: toward the moral management of organizational stakeholders. Business Horizons, 34(4), 39–48.CrossRefGoogle Scholar
  7. Cavalli-Sforza, L., & Feldman, M. W. (1981). Cultural transmission and evolution: a quantitative approach. Princeton: Princeton University Press.Google Scholar
  8. Cohen, G. A. (1995). Self-ownership, freedom, and equality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Danaher, J., Hogan, M. J., Noone, C., Kennedy, R., Behan, A., De Paor, A., Felzmann, H., et al. (2017). Algorithmic governance: developing a research agenda through the power of collective intelligence. Big Data & Society, 4(2), 2053951717726554.CrossRefGoogle Scholar
  10. Dawkins, R. (1999). The extended phenotype: the long reach of the gene (2nd ed.). Oxford: Oxford University Press.Google Scholar
  11. European Commission DG Health. (2014). The Use of Big Data in Public Health Policy and Research. Brussels: European Commission Directorate General for Health an Consumers eHealth and Health Technology Assessment.Google Scholar
  12. Eysenbach, G. (2009). Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the internet. Journal of Medical Internet Research, 11(1), e11.CrossRefGoogle Scholar
  13. Floridi, L. (2011). The informational nature of personal identity. Minds and Machines, 21(4), 549–566.CrossRefGoogle Scholar
  14. Floridi, L. (2014). Open data, data protection, and group privacy. Philosophy & Technology, 27(1), 1.CrossRefGoogle Scholar
  15. Floridi, L. (2016a). On human dignity as a foundation for the right to privacy. Philosophy & Technology, 29(4), 307–312.CrossRefGoogle Scholar
  16. Floridi, L. (2016b). Group Privacy: A Defence and an Interpretation. In L. Taylor, L. Floridi, & B. van der Sloot (Eds.), Group Privacy: New Challenges of Data Technologies (pp. 83–100). Cham, Springer.Google Scholar
  17. Freelon, D. (2014). On the interpretation of digital trace data in communication and social computing research. Journal of Broadcasting & Electronic Media, 58(1), 59–75.CrossRefGoogle Scholar
  18. Griffin, J. (2008). On human rights. Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Haraway, D. J. (2008). When species meet. Minneapolis: University of Minnesota Press.Google Scholar
  20. Heal, G. (2005). Corporate social responsibility: an economic and financial framework. The Geneva Papers on Risk and Insurance - Issues and Practice, 30(3), 387–409.CrossRefGoogle Scholar
  21. Hood, L., Lovejoy, J. C., & Price, N. D. (2015). Integrating big data and actionable health coaching to optimize wellness. BMC Medicine, 13, 4.CrossRefGoogle Scholar
  22. Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge: MIT Press.Google Scholar
  23. Jain, S. H., Powers, B. W., Hawkins, J. B., & Brownstein, J. S. (2015). The digital phenotype. Nature Biotechnology, 33(5), 462–463.CrossRefGoogle Scholar
  24. Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P., & Lepage, M. (2006). Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32(2), 153–164.CrossRefGoogle Scholar
  25. Kelion, L. 2017. Facebook Uses AI to Spot Suicidal Users. BBC News, March 1, 2017, sec. Technology.
  26. Kitcher, P. (2001). Science, truth, and democracy. Oxford: Oxford University Press.CrossRefGoogle Scholar
  27. Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google flu: traps in big data analysis. Science, 343(6176), 1203–1205.CrossRefGoogle Scholar
  28. Lupton, D. (2015). Health promotion in the digital era: a critical commentary. Health Promotion International, 30(1), 174–183.CrossRefGoogle Scholar
  29. Lupton, D. (2016a). Digital companion species and eating data: implications for theorising digital data–human assemblages. Big Data & Society, 3(1), 1–5.CrossRefGoogle Scholar
  30. Lupton, D. (2016b). Foreword: lively devices, lively data and lively leisure studies. Leisure Studies, 35(6), 709–711.CrossRefGoogle Scholar
  31. Malik, M M., Pfeffer, J. (2016). Identifying Platform Effects in Social Media Data. In Tenth International AAAI Conference on Web and Social Media.
  32. Mittelstadt, B. (2017a). Designing the health-related Internet of things: ethical principles and guidelines. Information 8 (3).
  33. Mittelstadt, B. (2017b). Ethics of the health-related Internet of things: a narrative review. Ethics and Information Technology, 19(3), 157–175.CrossRefGoogle Scholar
  34. Mittelstadt, B., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: mapping the debate. Big Data & Society, 3(2), 2053951716679679.CrossRefGoogle Scholar
  35. National Academy of Sciences. (2011). Toward precision medicine: nuilding a knowledge network for biomedical research and a new taxonomy of disease. Washington D.C.: National Academies Press.Google Scholar
  36. Nozick, R. (1974). Anarchy, state, and utopia. New York: Basic Books.Google Scholar
  37. Perbal, L. (2013). The ‘warrior gene’ and the Mãori people: the responsibility of the geneticists. Bioethics, 27(7), 357–410.CrossRefGoogle Scholar
  38. Prainsack, B., & Buyx, A. (2013). A solidarity-based approach to the governance of research biobanks. Medical Law Review, 21(1), 71–91.CrossRefGoogle Scholar
  39. Regulation on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation 2016/ 679). (2016).
  40. Relton, C. L., & Smith, G. D., (2010). Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med, 7(10), e1000356.Google Scholar
  41. Ruths, D., & Pfeffer, J. (2014). Social media for large studies of behavior. Science, 346(6213), 1063–1064.CrossRefGoogle Scholar
  42. Salathé, M., & Khandelwal, S. (2011). Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLoS Computational Biology, 7(10), e1002199.CrossRefGoogle Scholar
  43. Salathé, M., Bengtsson, L., Bodnar, T. J., Brewer, D. D., Brownstein, J. S., Buckee, C., Campbell, E. M., et al. (2012). Digital Epidemiology. PLoS Computational Biology, 8(7), e1002616.CrossRefGoogle Scholar
  44. The Onlife Initiative (2015). The onlife manifesto. In L. Floridi (Ed.), The onlife manifesto. Cham: Springer.CrossRefGoogle Scholar
  45. Vayena, E., Salathé, M., Madoff, L. C., & Brownstein, J. S. (2015). Ethical challenges of big data in public health. PLoS Computational Biology, 11(2), e1003904.CrossRefGoogle Scholar
  46. Vayena, E., Dzenowagis, J, Langfeld, M. (2016). The Health Data Ecosystem and Big Data. WHO. 2016.
  47. Widdows, H. (2013). The connected self: the ethics and governance of the genetic individual. Cambridge: Cambridge University Press.Google Scholar
  48. Winickoff, D. E., & Neumann, L. B. (2005). Towards a social contract for genomics: property and the public in the ‘biotrust’ model. Genomics, Society and Policy, 1(3), 8–21.CrossRefGoogle Scholar
  49. Winickoff, D. E., & Winickoff, R. N. (2003). The charitable trust as a model for genomic biobanks. New England Journal of Medicine, 349(12), 1180–1184.CrossRefGoogle Scholar
  50. WMA - The World Medical Association. (2016). WMA Declaration of Taipei on Ethical Considerations Regarding Health Databases and Biobanks. Website of the WMA. October 22, 2016.
  51. Zignani, M, Gaito, S, Rossi, G P, Zhao, X, Zheng, H, Zhao, B Y. (2014). Link and triadic closure delay: temporal metrics for social network dynamics. In Eighth International AAAI Conference on Weblogs and Social Media.

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of ZurichZurichSwitzerland

Personalised recommendations