Advertisement

Philosophy & Technology

, Volume 31, Issue 1, pp 131–153 | Cite as

Proofs as Cognitive or Computational: Ibn Sı̄nā’s Innovations

  • Wilfrid Hodges
Research Article
  • 457 Downloads

Abstract

We record the advances made by the eleventh century Persian logician Ibn Sina—known in the West as Avicenna—away from a purely cognitive view of proofs and towards a more computational view, and the kinds of consideration that led him to these advances. Some of Ibn Sina’s new logics, which stand somewhere between Aristotle’s categorical syllogisms and modern first-order logic, can serve as a kind of laboratory for testing what are the differences between Aristotelian and modern logic, and where these differences come from.

Keywords

Ibn Sina Logic Cognitive Symbol-processing Linearity Syllogistic order Noninferential step Top-level processing 

References

  1. Akasoy, A., & Fidora, A. (2008). Ibn Sab cı̄n and Raimundus Lullus—the question of the Arabic sources of Lullus’ logic revisited. In Akasoy, A., & Raven, W. (Eds.) Islamic Thought in the Middle Ages: Studies in Text, Transmission and Translation, in Honour of Hans Daiber (pp. 433–458). Leiden: Brill.Google Scholar
  2. Al-Fārābı̄. (1968). Kitāb al-alfāẓ al-musta c malati fı̄ al-manṭiq (Book of expressions used in logic). Muḥsin Mahdı̄ (Ed.) Beirut: Dār al-Mašriq.Google Scholar
  3. Al-Fārābı̄ (1986). Kitāb al-qiyās and Kitāb al-qiyās al-ṣagı̄r, Al-Fārābı̄, al-Manṭiq c inda l-Fārābı̄, al- c Ajam, R. (Ed.) (Vol. 2 pp. 11–64 and 65–93). Beirut: Dār al-Mashriq.Google Scholar
  4. Al-Fārābı̄ (1988). Al-manṭiqiyāt lil-fārābı̄ Vol.2 Al-shurūḥ al-manṭiqiyya, ed. Dānishpazhūh, M.T. Qum: Maktabat Ayat Allah.Google Scholar
  5. Aristotle, De Anima, & Ross, W.D. (1956). London: Oxford University Press.Google Scholar
  6. Börger, E., Grädel, E., & Gurevich, Y. (1997). The Classical Decision Problem, Perspectives in Mathematical Logic. Berlin: Springer.CrossRefGoogle Scholar
  7. Chatti, S. (2016). Existential import in Avicenna’s modal logic. Arabic Sciences and Philosophy, 26, 45–71.CrossRefGoogle Scholar
  8. Chatti, S. (2016). Avicenna (Ibn Sina): logic, Internet Encyclopedia of Philosophy, http://www.iep.utm.edu/av-logic/ (retrieved 30 August).
  9. Descartes, R. (1997). Key Philosophical Writings, trans. Haldane, E.S., & Ross, G.R.T. (Eds.), Enrique Chávez-Arvizo, Wordsworth.Google Scholar
  10. Frege, G. (1998). Grundgesetze der Arithmetik I/II. Hildesheim: Olms.Google Scholar
  11. Giolfo, M.E.B., & Hodges, W. (2016). The System of the Sciences of Language by Sakkākı̄: Logic as a Complement of Rhetoric. In Sartori, M., & et al. (Eds.) Approaches to the History and Dialectology of Arabic, in Honour of Pierre Larcher (pp. 242–266). Brill: Leiden.Google Scholar
  12. Gutas, D. (2014). Avicenna and the Aristotelian Tradition: Introduction to Reading Avicenna’s Philosophical Works, 2nd Edn. Leiden: Brill.Google Scholar
  13. Hodges, W. (2009). Traditional logic, modern logic and natural language. Journal of Philosophical Logic, 38, 589–606.CrossRefGoogle Scholar
  14. Hodges, W. (2010). How Boole broke through the top syntactic level. In Charalambous, H., & et al. (Eds.) Proceedings of the History of Modern Algebra: 19th Century and Later Conference (pp. 73–81). Thessaloniki: Aristotle University of Thessaloniki.Google Scholar
  15. Hodges, W. (2010). Ibn Sina on analysis: 1. Proof search. Or: Abstract State Machines as a tool for history of logic. In Blass, A. , Dershowitz, N., & Reisig, W. (Eds.) Fields of Logic and Computation: Essays Dedicated to Yuri Gurevich on the Occasion of his 70th Birthday. Lecture Notes in Computer Science 6300 (pp. 354–404). Heidelberg: Springer.Google Scholar
  16. Hodges, W. (2012). Affirmative and negative in Ibn Sina. In Insolubles and Consequences: Essays in honour of Stephen Read, ed.Catarina Dutilh Novaes and Ole Thomassen Hjortland (pp. 119–134). London: College Publications.Google Scholar
  17. Hodges, W. Ibn Sı̄nā on reductio ad absurdum, Review of Symbolic Logic. doi: 10.1017/S1755020316000290, to be appear in print in 2017.
  18. Hodges, W. (2015). The move from one to two quantifiers. In Koslow, A., & Buchsbaum, A. (Eds.) The Road to Universal Logic: Festschrift for 50th Birthday of Jean-Yves Béziau, (Vol. 1 pp. 221–240). Basel: Birkhäuser.Google Scholar
  19. Hodges, W. (2014). Ibn Sı̄nā states and applies properties of temporal logic, text of talk to SIHSPAI Paris, preprint online at wilfridhodges.co.uk/arabic39.pdf.
  20. Hodges, W. (2016). Mathematical Background to the Logic of Ibn Sı̄nā, to appear; an incomplete draft is online at wilfridhodges.co.uk/arabic44.pdf.
  21. Hodges, W. (in preparation). A Manual of Ibn Sı̄nā’s Formal Logic, .Google Scholar
  22. Hodges, W., & Johnston, S. Medieval modalities and modern methods: Avicenna and Buridan, IfCoLog Journal of Logics and their Applications, to appear.Google Scholar
  23. Hodges, W., & Moktefi, A. Ibn Sı̄nā and the Practice of Logic, in preparation.Google Scholar
  24. Rušd, I. (1996). Nāṣṣ talḵı̄ṣ manṭiq ’arisṭu, Vol.4 Kitāb ’anālūṭı̄qı̄ al-’awwalu ’aw kitāb al-qiyās. Jı̄rār Jı̄hāmı̄ (Ed.) Beirut: Dār al-Fikr al-Libnānı̄.Google Scholar
  25. Sı̄nā, I. (1951). Al-madḵal (Eisagoge). el-Khodeiri, M., Anawati, G.C., & el-Ahwani, F (Eds.) Cairo: Našr Wizāra al-Ma cārif al- cUmūmiyya.Google Scholar
  26. Sı̄nā, I. (1964). Al-qiyās (Syllogism) Zayed, S. (Ed.): Cairo.Google Scholar
  27. Sı̄nā, I. (2004). Resālah-e manṭegh-e Dāneshnāmeh-ye Alaei Mo cı̄n, M., & Meshkāt, S.M. (Eds.): Hamadan.Google Scholar
  28. Sı̄nā, I. (1910). Mantiq al-Masriqiyyin (Easterners). Cairo: Al-Maktaba al-Salafiyya.Google Scholar
  29. Sı̄nā, I. (2000). Al-išārāt wal-tanbı̄hāt, ed. Mojtaba Zāre c ı̄, Qum Būstān-e Ketab-e Qom, The logical part is translated: Inati, S.C. (1984). Ibn Sı̄nā, Remarks and Admonitions, Part One: Logic, Pontifical Institute of Mediaeval Studies, Toronto.Google Scholar
  30. Sı̄nā, I. (1974). The Life of Ibn Sina. Gohlman, W.E. (Ed.) Albany NY: State University of New York Press.Google Scholar
  31. Zurca, I. (1994). Manṭiq ’ibn zurca. Jı̄rār Jı̄hāmı̄ & Rafı̄q al- cAjam (Eds.) Beirut: Dār al-Fikr al-Libnānı̄.Google Scholar
  32. Jabre, F. (1999). Al-naṣṣ al-kāmil li-manṭiq arisṭū Vol. 2.: Al-jadal and Al-muḡālata, Beirut Dār al-Fikr al-Libnānı̄.Google Scholar
  33. Jabre, F., & et al. (1996). Mawsū cat muṣṭalaḥāt cilm al-manṭiq cinda al- c arab. Beirut: Maktabat Lubnān Nāširūn.Google Scholar
  34. Kilwardby, R. (1976). De Ortu Scientiarum. Judy, A.G. (Ed.) London: British Academy.Google Scholar
  35. Movahed, Z. (2016). Reflections on the Logic of Ibn-Sı̄nā and Suhrawardi. Tehran: Hermes.Google Scholar
  36. Philoponus, J. (1905). In Aristotelis Analytica Priora Commentaria. Wallies, M. (Ed.) Berlin: Reimer.Google Scholar
  37. Street, T. (2004) In Gabbay, D.M., & Woods, J (Eds.), Arabic logic, Handbook of the History of Logic, (pp. 523–596): Elsevier.Google Scholar
  38. Thom, P. (1981). The Syllogism. Munich: Philosophia Verlag.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Independent ResearcherDevonUK

Personalised recommendations