Philosophy & Technology

, Volume 30, Issue 4, pp 413–426 | Cite as

Promoting Biodiversity

  • Christopher Gyngell
  • Julian Savulescu
Research Article


Advances in biotechnology mean that it may soon be possible to recreate previously extinct species. This has led to an emerging debate within bioethics about whether we ought to reintroduce extinct species into our ecosystems. In this paper, we discuss the role that biodiversity could play in this debate. Many believe that biodiversity is a good that should be protected. We argue that if biodiversity is a good, then this suggests it should also be promoted, including by reintroducing previously extinct species. We begin by outlining different ways in which biodiversity could be conceptualized, and then analyze various accounts of its value. We suggest no approach justifies an asymmetry between “protecting” biodiversity by conserving species alive today, and “creating” biodiversity by introducing previously extinct species. This suggests that if we have reasons stemming from biodiversity to protect species from extinction, we will have similar reasons to reintroduce previously extinct species. We close by asking whether arguments from biodiversity speak in favor of introducing some novel species into the ecosystem.


Biodiversity Value De-extinction Synthetic biology Ethics 


  1. Bostrom, N., & Ord, T. (2006). The reversal test: eliminating status quo bias in applied ethics. Ethics, 116, 656–679.CrossRefGoogle Scholar
  2. Ceballos, G., Ehrlich, P. R., Barnosky, A. D., Garcia, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances, 1, e1400253–e1400253. doi: 10.1126/sciadv.1400253.CrossRefGoogle Scholar
  3. Douglas, T., & Savulescu, J. (2010). Synthetic biology and the ethics of knowledge. Journal of Medical Ethics, 36, 687–693. doi: 10.1136/jme.2010.038232.CrossRefGoogle Scholar
  4. Douglas, T., Powell, R., & Savulescu, J. (2013). Is the creation of artificial life morally significant? Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 688–696. doi: 10.1016/j.shpsc.2013.05.016.CrossRefGoogle Scholar
  5. Francis, 2015. Encyclical letter on care for our common home.Google Scholar
  6. Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379–391. doi: 10.1046/j.1461-0248.2001.00230.x.CrossRefGoogle Scholar
  7. Hoag, H., 2010. Confronting the biodiversity crisis. Nat. Rep. Clim. Change 51–54. doi: 10.1038/climate.2010.38
  8. Keith, D. A., Rodríguez, J. P., Brooks, T. M., Burgman, M. A., Barrow, E. G., Bland, L., Comer, P. J., Franklin, J., Link, J., McCarthy, M. A., Miller, R. M., Murray, N. J., Nel, J., Nicholson, E., Oliveira-Miranda, M. A., Regan, T. J., Rodríguez-Clark, K. M., Rouget, M., & Spalding, M. D. (2015). The IUCN red list of ecosystems: motivations, challenges, and applications: design of red list criteria for ecosystems. Conservation Letters, 8, 214–226. doi: 10.1111/conl.12167.CrossRefGoogle Scholar
  9. Kiessling, W. (2005). Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature, 433, 410–413. doi: 10.1038/nature03152.CrossRefGoogle Scholar
  10. Korsgaard, C. M. (1983). Two distinctions in goodness. Philosophical Review, 92.Google Scholar
  11. Lefcheck, J. S., & Duffy, J. E. (2015). Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology, 96, 2973–2983. doi: 10.1890/14-1977.1.CrossRefGoogle Scholar
  12. Leopold, A.L (1949). A sand county almanac: and sketches here and there. Oxford University Press, New York.Google Scholar
  13. Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 16, 106–115. doi: 10.1111/ele.12073.CrossRefGoogle Scholar
  14. Maier, D. S. (2012). What’s so good about biodiversity? The international library of environmental, agricultural and food ethics. Dordrecht: Springer Netherlands.Google Scholar
  15. Miller, D. G. (2005). Evolution of ecological and behavioural diversity: Australian acacia thrips as model organisms: book review. Systematic Entomology, 30, 177–178. doi: 10.1111/j.1365-3113.2005.00295.x.CrossRefGoogle Scholar
  16. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on earth and in the ocean? PLoS Biology, 9, e1001127. doi: 10.1371/journal.pbio.1001127.CrossRefGoogle Scholar
  17. Naess, A. (1973). The shallow and the deep, long range ecology movement. A summary. Inquiry, 16, 95–100. doi: 10.1080/00201747308601682.CrossRefGoogle Scholar
  18. Nations, U. (1992). Convention on biological diversity.Google Scholar
  19. O’Neill, J. (1992). The varieties of intrinsic value. The Monist, 75, 119–137.CrossRefGoogle Scholar
  20. Parens, E. (1995). The goodness of fragility: on the prospect of genetic technologies aimed at the enhancement of human capacities. Kennedy Institute of Ethics Journal, 5, 141–153.CrossRefGoogle Scholar
  21. Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285–307. doi: 10.1146/ Scholar
  22. Persson, I., & Savulescu, J. (2012). Unfit for the future: the need for moral enhancement. Oxford: Oxford University Press.CrossRefGoogle Scholar
  23. Powell, R. (2010). What’s the harm? An evolutionary theoretical critique of the precautionary principle. Kennedy Institute of Ethics Journal, 20, 181–206.CrossRefGoogle Scholar
  24. Powell, R., Buchanan, A. E., Douglas, T., & Savulescu, J. (2011). Response to consultation on emerging biotechnologies the ethical implications of synthetic biology.Google Scholar
  25. Revive & Restore, 2013. . Revive Restore.Google Scholar
  26. Rolston, H. (2006). Intrinsic values on earth: nature and nations. In H. ten Have (Ed.), Environmental ethics and international policy (pp. 47–67). Paris: United Nations Educational Scientific and Cultural Organization (UNESCO).Google Scholar
  27. Roy, K., & Foote, M. (1997). Morphological approaches to measuring biodiversity. Trends in Ecology & Evolution, 12, 277–281.CrossRefGoogle Scholar
  28. Sandler, R. (2010). The value of species and the ethical foundations of assisted colonization. Conservation Biology, 24, 424–431. doi: 10.1111/j.1523-1739.2009.01351.x.CrossRefGoogle Scholar
  29. Savulescu, J., & Powell, R. (2013). Mammoth cloning: the ethics. The Conversation.Google Scholar
  30. Soule, M. (1985). What is conservation biology? BioScience, 35, 727–734. doi: 10.2307/1310054.CrossRefGoogle Scholar
  31. Sukdev, P. (2008). The economics of ecosystems and biodiversity.Google Scholar
  32. Vucetich, J. A., Bruskotter, J. T., & Nelson, M. P. (2015). Evaluating whether nature’s intrinsic value is an axiom of or anathema to conservation. Conservation Biology, 29, 321–332. doi: 10.1111/cobi.12464.CrossRefGoogle Scholar
  33. Wilson, E.., 1988. Editors forward, in: Biodiversity. National Academy of Sciences/Smithsonian Institution, Washington, pp. v–x.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Oxford Uehiro Centre for Practical EthicsOxford UniversityOxfordUK
  2. 2.School of Philosophical, Historical, and International StudiesMonash UniversityMelbourneAustralia

Personalised recommendations