Philosophy & Technology

, Volume 25, Issue 2, pp 199–219 | Cite as

Standing Reserves of Function: A Heideggerian Reading of Synthetic Biology

Research Article

Abstract

Synthetic biology, an emerging field of science and technology, intends to make of the natural world a substrate for engineering practice. Drawing inspiration from conventional engineering disciplines, practitioners of synthetic biology hope to make biological systems standardized, calculable, modular, and predictably functional. This essay develops a Heideggerian reading of synthetic biology as a useful perspective with which to identify and explore key facets of this field, its knowledge, its practices, and its products. After overviews of synthetic biology and Heidegger’s account of technology, I discuss calculability, utility, function, setting-upon, and ordering, with the aim of discussing the manner in which synthetic biology works to render the biological world intelligible as something to be used, rather than something that is in and of itself. Having developed this Heideggerian reading, I proffer a number of corrections to his account that enable a more accurate, nuanced understanding of synthetic biology. Specifically, I discuss the notion of Ge-stell and submit that multiple systems of “enframing” may help to make Heidegger’s argument more robust. I suggest that synthetic biology may work to reveal the natural world as a standing-reserve of function.

Keywords

Synthetic biology Heidegger Function Calculability Enframing 

References

  1. Ajo-Franklin, C. M., Drubin, D. A., Eskin, J. A., Gee, E., Landgraf, D., Phillips, I., et al. (2007). Rational design of memory in eukaryotic cells. Genes & Development, 21, 2271–2276.CrossRefGoogle Scholar
  2. Anderson, J. C., Clarke, E. J., Arkin, A. P., & Voigt, C. A. (2005). Environmentally controlled invasion of cancer cells by engineered bacteria. Journal of Molecular Biology, 355, 619–627.CrossRefGoogle Scholar
  3. Andrianantoandro, E., Basu S., Karig, D.K., & Weiss, R. (2006). Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2.Google Scholar
  4. Arkin, A. (2008). Setting the standard in synthetic biology. Nature Biotechnology, 26(7), 771–774.CrossRefGoogle Scholar
  5. Burrill, D. R., & Silver, P. A. (2010). Making cellular memories. Cell, 140(1), 13–18.CrossRefGoogle Scholar
  6. Canton, B., Labno, A., & Endy, D. (2008). Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology, 26(7), 787–793.CrossRefGoogle Scholar
  7. Chopra, P., & Kamma, A. (2006). Engineering life through synthetic biology. Silico Biology, 6(5), 401–410.Google Scholar
  8. Dreyfus, H. (1997). Heidegger on gaining a free relationship to technology. In K. Shrader-Frechette & L. Westra (Eds.), Technology and values (pp. 41–53). Oxford: Rowman & Littlefield.Google Scholar
  9. Elowitz, M., & Leibler, S. (2000). A synthetic oscillator network of transcriptional regulators. Nature, 403, 335–338.CrossRefGoogle Scholar
  10. Endy, D. (2005). Foundations for engineering biology. Nature, 438(24), 449–453.CrossRefGoogle Scholar
  11. Feenberg, A. (2005). Heidegger and Marcuse. London: Routledge.Google Scholar
  12. Glazebrook, T. (2000). Heidegger’s philosophy of science. New York: Fordham University Press.Google Scholar
  13. Glazebrook, T. (2001). Heidegger and scientific realism. Continental Philosophy Review, 34, 361–401.CrossRefGoogle Scholar
  14. Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402, C47–C52.CrossRefGoogle Scholar
  15. Heidegger, M. (1969 [1959]). In J. M. Anderson & H. Freund (Eds.), Discourse on thinking. New York, NY: Harper & Row.Google Scholar
  16. Heidegger, M. (1977). Modern science, metaphysics, and mathematics. In D. F. Krell (Ed.), Martin Heidegger: basic writings (pp. 247–282). New York, NY: Harper & Row.Google Scholar
  17. Heidegger, M. (1982a [1977]). The question concerning technology. In W. Lovitt (Ed.), The question concerning technology and other essays (pp. 3–35). New York, NY: Harper & Row.Google Scholar
  18. Heidegger, M. (1982b [1977]). The age of the world picture. In W. Lovitt (Ed.), The question concerning technology and other essays (pp. 115–154). New York, NY: Harper & Row.Google Scholar
  19. Heidegger, M. (1982c [1977]). Science and reflection. In W. Lovitt (Ed.), The question concerning technology and other essays (pp. 155–182). New York, NY: Harper & Row.Google Scholar
  20. Heidegger, M. (2000 [1953]). In G. Fried & R. Polt (Eds.), Introduction to metaphysics. New Haven, CT: Yale University Press.Google Scholar
  21. Heidegger, M. (2001 [1971]). The thing. In A. Hofstadter (Ed.), Poetry, language, thought (pp. 161–184). New York, NY: Harper Collins.Google Scholar
  22. Heidegger, M. (2005 [1927]). In J. Macquarrie & E. Robinson (Eds.), Being and time. Oxford: Blackwell.Google Scholar
  23. Heinemann, M., & Panke, S. (2006). Synthetic biology: putting engineering into biology. Bioinformatics, 22(22), 2790–2799.CrossRefGoogle Scholar
  24. Hood, W. F. (1972). The Aristotelian versus the Heideggerian approach to the problem of technology. In C. Mitcham & R. Mackey (Eds.), Philosophy and technology (pp. 347–363). New York, NY: Free Press.Google Scholar
  25. Keasling, J., Vincent, M., Pitera, D., Kim, S.-W., Sydnor, W. T., Yasuo, Y., et al. (2007). USPTO patent application 20070166782: biosynthesis of isopentenyl pyrophosphate.Google Scholar
  26. Kwok, R. (2010). Five hard truths for synthetic biology. Nature, 463, 288–290.CrossRefGoogle Scholar
  27. Lovitt, W. (1973). A Gespräch with Heidegger on technology. Man and World, 6(1), 44–62.CrossRefGoogle Scholar
  28. Lovitt, W. (1982). Introduction. In W. Lovitt (Ed.), The question concerning technology and other essays (pp. xiii–xxxix). New York, NY: Harper & Row.Google Scholar
  29. Lovitt, W., & Lovitt, H. B. (1995). Modern technology in the Heideggerian perspective. Lewiston, NY: Edwin Mellen.Google Scholar
  30. Mayr, E. (2004). What makes biology unique? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. McDaniel, R., & Weiss, R. (2005). Advances in synthetic biology. Current Opinion in Biotechnology, 16(4), 476–483.CrossRefGoogle Scholar
  32. Nature Editorial Board. (2007). Meanings of ‘life’. Nature, 447, 1031–1032.Google Scholar
  33. Purnick, P., & Weiss, R. (2009). The second wave of synthetic biology. Nature Reviews Molecular Cell Biology, 10(6), 410–422.CrossRefGoogle Scholar
  34. Rouse, J. (1985). Heidegger’s later philosophy of science. Southern Journal of Philosophy, 23(1), 75–92.CrossRefGoogle Scholar
  35. Sanders, R. (2010). NSF grant to launch world’s first open-source genetic parts production facility. Genetics Engineering & Biotechnology News, January 20.Google Scholar
  36. Sauro, H. M. (2008). Modularity defined. Molecular Systems Biology, 4, 166.CrossRefGoogle Scholar
  37. Savage, D. F., Way, J., & Silver, P. A. (2008). Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chemical Biology, 3(1), 13–16.CrossRefGoogle Scholar
  38. Vincenti, W. (1990). What engineers know and how they know it. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  39. Voigt, C. (2011). Breaking complex gene clusters into parts: refactoring nitrogen fixation. Fifth International Meeting on Synthetic Biology.Google Scholar
  40. Yeh, B. J., & Lim, W. A. (2007). Synthetic biology: lessons from the history of synthetic organic chemistry. Nature Chemical Biology, 3, 521–525.CrossRefGoogle Scholar
  41. Zimmerman, M. E. (1977). Beyond humanism: Heidegger’s understanding of technology. Listening, 12(3), 74–83.Google Scholar
  42. Zimmerman, M. E. (1990). Heidegger’s confrontation with modernity. Bloomington, IN: Indiana University Press.Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of BioengineeringStanford UniversityStanfordUSA
  2. 2.ESRC Centre for Social and Economics Research on Innovation in GenomicsUniversity of EdinburghEdinburghUK

Personalised recommendations