Skip to main content

Advertisement

Log in

Revolutionizing rheumatoid arthritis therapy: harnessing cytomembrane biomimetic nanoparticles for novel treatment strategies

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a systemic immune disease with severe implications for joint health. The issue of non-specific drug distribution potentially limits the therapeutic efficacy and increases the risk associated with RA treatment. Researchers employed cytomembrane-coated biomimetic nanoparticles (NPs) to enhance the targeting delivery efficacy to meet the demand for drug accumulation within the affected joints. Furthermore, distinct cytomembranes offer unique functionalities, such as immune cell activation and augmented NP biocompatibility. In this review, the current strategies of RA treatments were summarized in detail, and then an overview of RA’s pathogenesis and the methodologies for producing cytomembrane-coated biomimetic NPs was provided. The application of cytomembrane biomimetic NPs derived from various cell sources in RA therapy is explored, highlighting the distinctive attributes of individual cytomembranes as well as hybrid membrane configurations. Through this comprehensive assessment of cytomembrane biomimetic NPs, we elucidate the prospective applications and challenges in the realm of RA therapy, and the strategy of combined therapy is proposed. In the future, cytomembrane biomimetic NPs have a broad therapeutic prospect for RA.

Graphical abstract

Illustration depicting diverse strategies for generating cytomembrane biomimetic nanoparticles (NPs). Cellular membranes are harvested through distinct methodologies, and subsequently fused with polymer NPs to facilitate the encapsulation of various therapeutic agents, thereby generating cell membrane biomimetic preparations. This innovative approach holds potential for rheumatoid arthritis (RA) treatment, underscored by its intrinsic targeting precision, anti-inflammatory attributes, and favorable biocompatibility. (Figure created using BioRender.com)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RA:

Rheumatoid arthritis

NSAIDs:

Nonsteroidal anti-inflammatory drugs

GCs:

Glucocorticoids

DMARDs:

Disease-modifying antirheumatic drugs

TNF:

Tumor necrosis factor

NPs:

Nanoparticles

ACPA:

Anti-citrullinated protein antibodies

PAD4:

Peptidyl arginine deiminase

RF:

Rheumatoid factor

FLSs:

Fibroblast-like synoviocytes

IL:

Interleukin

Treg:

Regulatory T

RBC:

Red blood cells

PBS:

Phosphate-buffered saline

CB:

Cytochalasin B

PLGA:

Polylactic acid-glycolic acid

PNPs:

Platelet membrane-coated NPs

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

FNC:

Flash nano-complexation

PB:

Prussian blue

HCQ:

Hydroxychloroquine

siRNAs:

Small interfering RNAs

RAFLS:

Rheumatoid arthritis FLSs

FLSreg:

Regulatory phenotype in FLS

IFN-γ:

Interferon-gamma

MMV:

Macrophage-derived microvesicles

HUVECs:

Human umbilical vein endothelial cells

RNPs:

Red blood cell membrane-coated NPs

siRNAsT/I :

TNF-α and IL-6-silencing siRNAs

ROS:

Reactive oxygen species

MMNs:

Macrophage membrane nanocarriers

PA:

Photoacoustic

ICAM-1:

Intracellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

UVECs:

Umbilical vein endothelial cells

LFA:

Lymphocyte function-associated antigen

MTX:

Methotrexate

RAFLSM:

RAFLS membranes

HA:

Hyaluronic acid

NDDS:

Nano-drug delivery systems

References

  1. Ding Q, Hu W, Wang R, Yang Q, Zhu M, Li M, et al. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Sig Transduct Target Ther. 2023;8:68.

    Article  Google Scholar 

  2. Gravallese EM, Firestein GS. Rheumatoid arthritis — common origins, divergent mechanisms. N Engl J Med. 2023;388:529–42.

    Article  CAS  PubMed  Google Scholar 

  3. Lönnblom E, Leu Agelii M, Sareila O, Cheng L, Xu B, Viljanen J, et al. Autoantibodies to disease-related proteins in joints as novel biomarkers for the diagnosis of rheumatoid arthritis. Arthritis Rheumatol. 2023;75:1110–9.

    Article  PubMed  Google Scholar 

  4. Luo P, Gao F-Q, Sun W, Li J-Y, Wang C, Zhang Q-Y, et al. Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis. Military Med Res. 2023;10:31.

    Article  CAS  Google Scholar 

  5. Bennett JL, Pratt AG, Dodds R, Sayer AA, Isaacs JD. Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis. Nat Rev Rheumatol. 2023;19:239–51.

    Article  CAS  PubMed  Google Scholar 

  6. Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, et al. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res. 2023;11:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nikiphorou E, Philippou E. Nutrition and its role in prevention and management of rheumatoid arthritis. Autoimmun Rev. 2023;22:103333.

    Article  CAS  PubMed  Google Scholar 

  8. Han Y, Huang S. Nanomedicine is more than a supporting role in rheumatoid arthritis therapy. J Control Release. 2023;356:142–61.

    Article  CAS  PubMed  Google Scholar 

  9. Radu A-F, Bungau SG. Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Res Rev. 2023;87: 101927.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials. 2021;264:120390.

    Article  CAS  PubMed  Google Scholar 

  11. Lin G, Zhang M. Ligand chemistry in antitumor theranostic nanoparticles. Acc Chem Res. 2023;56:1578–90.

    Article  CAS  PubMed  Google Scholar 

  12. Lazzarotto Rebelatto ER, Rauber GS, Caon T. An update of nano-based drug delivery systems for cannabinoids: biopharmaceutical aspects & therapeutic applications. Int J Pharm. 2023;635:122727.

    Article  CAS  PubMed  Google Scholar 

  13. Vallorz EL, Janda J, Mansour HM, Schnellmann RG. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney Int. 2022;102:1073–89.

    Article  CAS  PubMed  Google Scholar 

  14. Haque M, Shakil MS, Mahmud KM. The promise of nanoparticles-based radiotherapy in cancer treatment. Cancers. 2023;15:1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y-S, Wu H-H, Jiang X-C, Zhang T-Y, Zhou Y, Huang L-L, et al. Active stealth and self-positioning biomimetic vehicles achieved effective antitumor therapy. J Control Release. 2021;335:515–26.

    Article  CAS  PubMed  Google Scholar 

  16. Wu H, Zhang T, Li N, Gao J. Cell membrane-based biomimetic vehicles for effective central nervous system target delivery: insights and challenges. J Control Release. 2023;360:169–84.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng X, Zhang T, Huang T, Zhou Y, Gao J. Cell-derived membrane biomimetic nanocarriers for targeted therapy of pulmonary disease. Int J Pharm. 2022;620:121757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46:183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. The Lancet. 2016;388:2023–38.

    Article  CAS  Google Scholar 

  20. Shipman JG, Onyenwoke RU, Sivaraman V. Calcium-dependent pulmonary inflammation and pharmacological interventions and mediators. Biology. 2021;10:1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M. Structural basis for Ca2+-induced activation of human PAD4. Nat Struct Mol Biol. 2004;11:777–83.

    Article  CAS  PubMed  Google Scholar 

  22. McInnes IB. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.

    Article  CAS  PubMed  Google Scholar 

  23. Rezaei Kahmini F, Shahgaldi S, Azimi M, Mansourabadi AH. Emerging therapeutic potential of regulatory T (Treg) cells for rheumatoid arthritis: new insights and challenges. Int Immunopharmacol. 2022;108:108858.

    Article  CAS  PubMed  Google Scholar 

  24. Belton CM, Goodwin PC, Fatherazi S, Schubert MM, Lamont RJ, Izutsu KT. Calcium oscillations in gingival epithelial cells infected with porphyromonas gingivalis. Microbes Infect. 2004;6:440–7.

    Article  CAS  PubMed  Google Scholar 

  25. Mydel P, Wang Z, Brisslert M, Hellvard A, Dahlberg LE, Hazen SL, et al. Carbamylation-dependent activation of T cells: a novel mechanism in the pathogenesis of autoimmune arthritis. J Immuno. 2010;184:6882–90.

    CAS  Google Scholar 

  26. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immun Rev. 2010;233:233–55.

    Article  CAS  PubMed  Google Scholar 

  27. Ouboussad L, Burska AN, Melville A, Buch MH. Synovial tissue heterogeneity in rheumatoid arthritis and changes with biologic and targeted synthetic therapies to inform stratified therapy. Front Med. 2019;6:45.

    Article  Google Scholar 

  28. Bromley M, Woolley DE. Histopathology of the rheumatoid lesion. Arthritis Rheum. 1984;27:857–63.

    Article  CAS  PubMed  Google Scholar 

  29. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schramm M, Leipe J, Schulze-Koops H, Skapenko A. Elevated expression of the Th17 cytokine interleukin 22 in rheumatoid arthritis. Ann Rheum Dis. 2010;69:A65–6.

    Article  Google Scholar 

  31. Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol. 2022;13:947636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res. 2022;71:1449–62.

    Article  CAS  PubMed  Google Scholar 

  33. Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, et al. B Cells in rheumatoid arthritis: pathogenic mechanisms and treatment prospects. Front Immunol. 2021;12:750753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pruijn GJ, Wiik A, Van Venrooij WJ. The use of citrullinated peptides and proteins for the diagnosis of rheumatoid arthritis. Arthritis Res Ther. 2010;12:203.

  35. Lucas C, Perdriger A, Amé P. Definition of B cell helper T cells in rheumatoid arthritis and their behavior during treatment. Semin Arthritis Rheu. 2020;50:867–72.

    Article  CAS  Google Scholar 

  36. Ma L, Liu B, Jiang Z, Jiang Y. Reduced numbers of regulatory B cells are negatively correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Rheumatol. 2014;33:187–95.

    Article  PubMed  Google Scholar 

  37. Zhang N, Li M, Hou Z, Ma L, Younas A, Wang Z, et al. From vaccines to nanovaccines: A promising strategy to revolutionize rheumatoid arthritis treatment. J Control Release. 2022;350:107–21.

    Article  CAS  PubMed  Google Scholar 

  38. Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev. 2023;203:115140.

    Article  CAS  PubMed  Google Scholar 

  39. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18:716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferreira-Silva M, Faria-Silva C, Viana Baptista P, Fernandes E, Ramos Fernandes A, Corvo ML. Liposomal nanosystems in rheumatoid arthritis. Pharmaceutics. 2021;13:454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuliński W, Skuza J. Physical therapy in rheumatoid arthritis. Acta Balneol. 2021;63:81–7.

    Article  Google Scholar 

  42. Lin Y, Chen Y, Deng R, Qin H, Li N, Qin Y, et al. Delivery of neutrophil membrane encapsulated non-steroidal anti-inflammatory drugs by degradable biopolymer microneedle patch for rheumatoid arthritis therapy. Nano Today. 2023;49:101791.

    Article  CAS  Google Scholar 

  43. Adami G, Fassio A, Rossini M, Bertelle D, Pistillo F, Benini C, et al. Tapering glucocorticoids and risk of flare in rheumatoid arthritis on biological disease-modifying antirheumatic drugs (bDMARDs). RMD Open. 2023;9:e002792.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guo H, Li L, Liu B, Lu P, Cao Z, Ji X, et al. Inappropriate treatment response to DMARDs: a pathway to difficult-to-treat rheumatoid arthritis. Int Immunopharmacol. 2023;122:110655.

    Article  CAS  PubMed  Google Scholar 

  45. Bredemeier M, Duarte ÂL, Pinheiro MM, Kahlow BS, Macieira JC, Ranza R, et al. The effect of antimalarials on the safety and persistence of treatment with biologic agents or Janus kinase inhibitors in rheumatoid arthritis. Rheumatology. 2023;63:456–465.

    Article  Google Scholar 

  46. Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: state of art and potential therapeutic strategies. Acta Pharm Sin B. 2021;11:1158–74.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khoshroo A, Ramezani K, Moghimi N, Bonakdar M, Ramezani N. The effect of disease-modifying antirheumatic drugs (DMARDs) on bone homeostasis in rheumatoid arthritis (RA) patients. Inflammopharmacol. 2023;31:689–97.

    Article  Google Scholar 

  48. Huang Y, Lin W, Chen Z, Wang Y, Huang Y, Tu S. Effect of tumor necrosis factor inhibitors on interstitial lung disease in rheumatoid arthritis: angel or demon? DDDT. 2019;13:2111–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li S, Wu Z, Li L, Liu X. Interleukin-6 (IL-6) receptor antagonist protects against rheumatoid arthritis. Med Sci Monit. 2016;22:2113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ebina K, Hirano T, Maeda Y, Yamamoto W, Hashimoto M, Murata K, et al. Factors affecting drug retention of Janus kinase inhibitors in patients with rheumatoid arthritis: the ANSWER cohort study. Sci Rep. 2022;12:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Jin J, Xu H, Wang C, Yang Y, Zhao Y, et al. Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy. Acta Biomater. 2021;121:541–53.

    Article  CAS  PubMed  Google Scholar 

  52. Chamani S, Moossavi M, Naghizadeh A, Abbasifard M, Majeed M, Johnston TP, et al. Immunomodulatory effects of curcumin in systemic autoimmune diseases. Phytother Res. 2022;36:1616–32.

    Article  CAS  PubMed  Google Scholar 

  53. Kwak HB, Yang D, Ha H, Lee J-H, Kim H-N, Woo E-R, et al. Tanshinone IIA inhibits osteoclast differentiation through down-regulation of c-Fos and NFATc1. Exp Mol Med. 2006;38:256–64.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang C, Zhang S, Liao J, Gong Z, Chai X, Lyu H. Towards better sinomenine-type drugs to treat rheumatoid arthritis: molecular mechanisms and structural modification. Molecules. 2022;27:8645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liang J, Chang B, Huang M, Huang W, Ma W, Liu Y, et al. Oxymatrine prevents synovial inflammation and migration via blocking NF-κB activation in rheumatoid fibroblast-like synoviocytes. Int Immunopharmacol. 2018;55:105–11.

    Article  CAS  PubMed  Google Scholar 

  56. Han Z, Gao X, Wang Y, Cheng S, Zhong X, Xu Y, et al. Ultrasmall iron-quercetin metal natural product nanocomplex with antioxidant and macrophage regulation in rheumatoid arthritis. Acta Pharm Sin B. 2023;13:1726–39.

    Article  CAS  PubMed  Google Scholar 

  57. Mease PJ, Hobbs K, Chalmers A, El-Gabalawy H, Bookman A, Keystone E, et al. Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis. 2009;68:1247–54.

    Article  CAS  PubMed  Google Scholar 

  58. Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy is becoming a reality. Nat Rev Rheumatol. 2018;14:381–2.

    Article  CAS  PubMed  Google Scholar 

  59. Pang Y, Su L, Fu Y, Jia F, Zhang C, Cao X, et al. Inhibition of furin by bone targeting superparamagnetic iron oxide nanoparticles alleviated breast cancer bone metastasis. Bioactive Materials. 2021;6:712–20.

    Article  CAS  PubMed  Google Scholar 

  60. Li D, Ma Y, Du J, Tao W, Du X, Yang X, et al. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy. Nano Lett. 2017;17:2871–8.

    Article  CAS  PubMed  Google Scholar 

  61. Andrabi SS, Yang J, Gao Y, Kuang Y, Labhasetwar V. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J Control Release. 2020;317:300–11.

    Article  CAS  PubMed  Google Scholar 

  62. Ak G, Bozkaya ÜF, Yılmaz H, Sarı Turgut Ö, Bilgin İ, Tomruk C, et al. An intravenous application of magnetic nanoparticles for osteomyelitis treatment: an efficient alternative. Int J Pharm. 2021;592:119999.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang T, Li F, Xu Q, Wang Q, Jiang X, Liang Z, et al. Ferrimagnetic nanochains-based mesenchymal stem cell engineering for highly efficient post-stroke recovery. Adv Funct Mater. 2019;29:1900603.

    Article  Google Scholar 

  64. Kumar Sharma D, Thakur N, Deb B. Review on classification, methods, and characterization of polymeric nanoparticles with their applications: pharmaceutical science-pharmaceutics. Int J Life Sci Pharm Res. 2022;12:24–38.

    Google Scholar 

  65. Patel SS, Hoogenboezem EN, Yu F, DeJulius CR, Fletcher RB, Sorets AG, et al. Core polymer optimization of ternary siRNA nanoparticles enhances in vivo safety, pharmacokinetics, and tumor gene silencing. Biomaterials. 2023;297:122098.

    Article  CAS  PubMed  Google Scholar 

  66. Meng Y, Han S, Yin J, Wu J. Therapeutic copolymer from salicylic acid and l -phenylalanine as a nanosized drug carrier for orthotopic breast cancer with lung metastasis. ACS Appl Mater Interfaces. 2023;15:41743–54.

    Article  CAS  PubMed  Google Scholar 

  67. Steffes VM, Zhang Z, MacDonald S, Crowe J, Ewert KK, Carragher B, et al. PEGylation of paclitaxel-loaded cationic liposomes drives steric stabilization of bicelles and vesicles thereby enhancing delivery and cytotoxicity to human cancer cells. ACS Appl Mater Interfaces. 2020;12:151–62.

    Article  CAS  PubMed  Google Scholar 

  68. Joseph A, Simo GM, Gao T, Alhindi N, Xu N, Graham DJ, et al. Surfactants influence polymer nanoparticle fate within the brain. Biomaterials. 2021;277:121086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Imran M, Jha LA, Hasan N, Shrestha J, Pangeni R, Parvez N, et al. “Nanodecoys” - future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm. 2022;621: 121790.

    Article  CAS  PubMed  Google Scholar 

  70. Wu H-H, Zhou Y, Tabata Y, Gao J-Q. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release. 2019;294:102–13.

    Article  CAS  PubMed  Google Scholar 

  71. Kunde SS, Wairkar S. Platelet membrane camouflaged nanoparticles: biomimetic architecture for targeted therapy. Int J Pharm. 2021;598:120395.

    Article  CAS  PubMed  Google Scholar 

  72. Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA. 2011;108:10980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Y, Luo J, Chen X, Liu W, Chen T. Cell membrane coating technology: a promising strategy for biomedical applications. Nano-Micro Lett. 2019;11:100.

    Article  CAS  Google Scholar 

  74. Xuan M, Shao J, Dai L, He Q, Li J. Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthcare Mater. 2015;4:1645–52.

    Article  CAS  Google Scholar 

  75. Li M, Nie C, Feng L, Yuan H, Liu L, Lv F, et al. Conjugated polymer nanoparticles for cell membrane imaging. Chem Asian J. 2014;9:3121–4.

    Article  CAS  PubMed  Google Scholar 

  76. Chen Y, Zhu M, Huang B, Jiang Y, Su J. Advances in cell membrane-coated nanoparticles and their applications for bone therapy. Bio Adv. 2023;144:213232.

    CAS  Google Scholar 

  77. Liu Y, Rao P, Qian H, Shi Y, Chen S, Lan J, et al. Regulatory fibroblast-like synoviocytes cell membrane coated nanoparticles: a novel targeted therapy for rheumatoid arthritis. Adv Sci. 2023;10:2204998.

    Article  CAS  Google Scholar 

  78. Chen J, Zeng S, Xue Q, Hong Y, Liu L, Song L, et al. Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis. Proc Natl Acad Sci USA.2022;119: e2213373119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi Y, Xie F, Rao P, Qian H, Chen R, Chen H, et al. TRAIL-expressing cell membrane nanovesicles as an anti-inflammatory platform for rheumatoid arthritis therapy. J Control Release. 2020;320:304–13.

    Article  CAS  PubMed  Google Scholar 

  80. Meng T, Jiang R, Wang S, Li J, Zhang F, Lee J-H, et al. Stem cell membrane-coated Au-Ag-PDA nanoparticle-guided photothermal acne therapy. Colloid Surface B. 2020;192:111145.

    Article  CAS  Google Scholar 

  81. Zhou M, Lai W, Li G, Wang F, Liu W, Liao J, et al. Platelet membrane-coated and VAR2CSA malaria protein-functionalized nanoparticles for targeted treatment of primary and metastatic cancer. ACS Appl Mater Interfaces. 2021;13:25635–48.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature Nanotech. 2018;13:1182–90.

    Article  CAS  Google Scholar 

  83. Rao L, Cai B, Bu L-L, Liao Q-Q, Guo S-S, Zhao X-Z, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano. 2017;11:3496–505.

    Article  CAS  PubMed  Google Scholar 

  84. Hu H, Yang C, Zhang F, Li M, Tu Z, Mu L, et al. A versatile and robust platform for the scalable manufacture of biomimetic nanovaccines. Adv Sci. 2021;8:2002020.

    Article  CAS  Google Scholar 

  85. He Z, Zhang Y, Feng N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. MSE. 2020;106:110298.

    CAS  Google Scholar 

  86. Hu S, Lin Y, Tong C, Huang H, Yi O, Dai Z, et al. A pH-driven indomethacin-loaded nanomedicine for effective rheumatoid arthritis therapy by combining with photothermal therapy. J Drug Target. 2022;30:737–52.

    Article  CAS  PubMed  Google Scholar 

  87. He Y, Li R, Liang J, Zhu Y, Zhang S, Zheng Z, et al. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. Nano Res. 2018;11:6086–101.

    Article  CAS  Google Scholar 

  88. Song X, Zheng Z, Ouyang S, Chen H, Sun M, Lin P, et al. Biomimetic epigallocatechin gallate–cerium assemblies for the treatment of rheumatoid arthritis. ACS Appl Mater Interfaces. 2023;15:33239–49.

    Article  CAS  PubMed  Google Scholar 

  89. Yu H, Fan J, Shehla N, Qiu Y, Lin Y, Wang Z, et al. Biomimetic hybrid membrane-coated xuetongsu assisted with laser irradiation for efficient rheumatoid arthritis therapy. ACS Nano. 2022;16:502–21.

    Article  CAS  PubMed  Google Scholar 

  90. Zheng Y, Guo W, Hu L, Xiao Z, Yang X, Cao Z, et al. Long circulating cancer cell-targeted bionic nanocarriers enable synergistic combinatorial therapy in colon cancer. ACS Appl Mater Interfaces. 2023;15:22843–53.

    Article  CAS  PubMed  Google Scholar 

  91. Li R, He Y, Zhu Y, Jiang L, Zhang S, Qin J, et al. Route to Rheumatoid Arthritis by Macrophage-Derived Microvesicle-Coated Nanoparticles. Nano Lett. 2019;19:124–34.

    Article  CAS  PubMed  Google Scholar 

  92. Boilard E, Blanco P, Nigrovic PA. Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol. 2012;8:534–42.

    Article  CAS  PubMed  Google Scholar 

  93. Lindemann S, Krämer B, Seizer P, Gawaz M. Platelets, inflammation and atherosclerosis. J Thromb Haemost. 2007;5:203–11.

    Article  CAS  PubMed  Google Scholar 

  94. Olumuyiwa-Akeredolu O, Page MJ, Soma P, Pretorius E. Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat Rev Rheumatol. 2019;15:237–48.

    Article  PubMed  Google Scholar 

  95. Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol. 2020;16:316–33.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Svensson MND, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody KM, et al. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci Adv. 2020;6:eaba4353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9:24–33.

    Article  CAS  PubMed  Google Scholar 

  98. Boutet M-A, Courties G, Nerviani A, Le Goff B, Apparailly F, Pitzalis C, et al. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun Rev. 2021;20:102758.

    Article  CAS  PubMed  Google Scholar 

  99. Wang Y, Han C, Cui D, Li Y, Ma Y, Wei W. Is macrophage polarization important in rheumatoid arthritis? Int Immunopharmacol. 2017;50:345–52.

    Article  PubMed  Google Scholar 

  100. Müller-Ladner U, Pap T, Gay RE, Neidhart M, Gay S. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Rev Rheumatol. 2005;1:102–10.

    Article  Google Scholar 

  101. Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci USA. 2017;114:11488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Medina-Leyte DJ, Domínguez-Pérez M, Mercado I, Villarreal-Molina MT, Jacobo-Albavera L. Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: a review. Appl Sci. 2020;10:938.

    Article  CAS  Google Scholar 

  103. Komici K, Perna A, Rocca A, Bencivenga L, Rengo G, Guerra G. Endothelial progenitor cells and rheumatoid arthritis: response to endothelial dysfunction and clinical evidences. IJMS. 2021;22:13675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. O’Neil LJ, Kaplan MJ. Neutrophils in rheumatoid arthritis: breaking immune tolerance and fueling disease. Trends Mol Med. 2019;25:215–27.

    Article  PubMed  Google Scholar 

  105. Tak PP, Smeets TJM, Daha MR, Kluin PM, Meijers KAE, Brand R, et al. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum. 1997;40:217–25.

    Article  CAS  PubMed  Google Scholar 

  106. Assi LK, Wong SH, Ludwig A, Raza K, Gordon C, Salmon M, et al. Tumor necrosis factor α activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis Rheum. 2007;56:1776–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Talbot J, Bianchini FJ, Nascimento DC, Oliveira RDR, Souto FO, Pinto LG, et al. CCR2 expression in neutrophils plays a critical role in their migration into the joints in rheumatoid arthritis. Arthritis Rheumatol. 2015;67:1751–9.

    Article  CAS  PubMed  Google Scholar 

  108. Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol. 2014;5:1–7.

    Article  CAS  Google Scholar 

  109. Raza F, Zafar H, Zhang S, Kamal Z, Su J, Yuan W, et al. Recent advances in cell membrane-derived biomimetic nanotechnology for cancer immunotherapy. Adv Healthcare Mater. 2021;10:2002081.

    Article  CAS  Google Scholar 

  110. Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release. 2020;327:546–70.

    Article  CAS  PubMed  Google Scholar 

  111. Lin Y, Yi O, Hu M, Hu S, Su Z, Liao J, et al. Multifunctional nanoparticles of sinomenine hydrochloride for treat-to-target therapy of rheumatoid arthritis via modulation of proinflammatory cytokines. J Control Release. 2022;348:42–56.

    Article  CAS  PubMed  Google Scholar 

  112. Li C, Zheng X, Hu M, Jia M, Jin R, Nie Y. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Del. 2022;19:883–98.

    Article  CAS  Google Scholar 

  113. Liu H, Su Y-Y, Jiang X-C, Gao J-Q. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res. 2023;13:716–37.

    Article  CAS  PubMed  Google Scholar 

  114. Shen Q, Tang T, Hu Q, Ying X, Shu G, Teng C, et al. Microwave hyperthermia-responsible flexible liposomal gel as a novel transdermal delivery of methotrexate for enhanced rheumatoid arthritis therapy. Biomater Sci. 2021;9:8386–95.

    Article  CAS  PubMed  Google Scholar 

  115. Qiao Z, Ding J, Wu C, Zhou T, Wu K, Zhang Y, et al. One-pot synthesis of Bi2S3/TiO2/rGO heterostructure with red light-driven photovoltaic effect for remote electrotherapy-assisted wound repair. Small. 2023;19:2206231.

    Article  CAS  Google Scholar 

  116. Ak G, Yilmaz H, Güneş A, Hamarat SS. In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy. Artif Cell Nanomed Biotechnol. 2018;46:926–37.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (U22A20383), Natural Science Foundation of Zhejiang Province (LD22H300002).

Author information

Authors and Affiliations

Authors

Contributions

Lan Ma: Writing. Xinchi Jiang and Jianqing Gao: Reviewing and supervision.

Corresponding authors

Correspondence to Xinchi Jiang or Jianqing Gao.

Ethics declarations

Consent of publication

Please refer to the supplementary document.

Competing interest

All authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Jiang, X. & Gao, J. Revolutionizing rheumatoid arthritis therapy: harnessing cytomembrane biomimetic nanoparticles for novel treatment strategies. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01605-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01605-x

Keywords

Navigation