Skip to main content
Log in

Anti-lung cancer synergy of low-dose doxorubicin and PD-L1 blocker co-delivered via mild photothermia-responsive black phosphorus

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

We have previously identified a latent interaction mechanism between non-small cell lung cancer cells (NSCLCC) and their associated macrophages (TAM) mediated by mutual paracrine activation of the HMGB1/RAGE/NF-κB signaling. Activation of this mechanism results in TAM stimulation and PD-L1 upregulation in the NSCLCC. In the present work, we found that free DOX at a low concentration that does not cause DNA damage could activate the HMGB1/RAGE/NF-κB/PD-L1 pathway byinducing oxidative stress. It was thus proposed that a combination of low-dose DOX and a PD-L1 blocker delivered in the NSCLC tumor would achieve synergistic TAM stimulation and thereby synergetic anti-tumor potency. To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. In vitro experiments then demonstrated that low-dose DOX and BMS-202 delivered via BMS-202/DOX@BP under mild photothermia displayed enhanced tumor cell toxicity with a potent synergism only in the presence of TAM. This enhanced synergism was due to an anti-tumor M1-like TAM phenotype that was synergistically induced by low dose DOX plus BMS-202 only in the presence of the tumor cells, indicating the damaged tumor cells to be the cardinal contributor to the M1-like TAM stimulation. In vivo, BMS-202/DOX@BP under mild photothermia exhibited targeted delivery to NSCLC graft tumors in mice and synergistic anti-tumor efficacy of delivered DOX and BMS-202. In conclusion, low-dose DOX in combination with a PD-L1 blocker is an effective strategy to turn TAM against their host tumor cells exploiting the HMGB1/RAGE/NF-κB/PD-L1 pathway. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai RJFIO. Macrophage and tumor cell cross-talk is fundamental for lung tumor progression: we need to talk. Front Oncol. 2020;10:324.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Rich JN. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. 2014;6:1670–90.

    Google Scholar 

  4. Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol. 2020;10:566511.

    Article  PubMed  PubMed Central  Google Scholar 

  5. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sharma P, Allison JPJS. The future of immune checkpoint therapy. 2015;348:56–61.

    CAS  Google Scholar 

  7. Toor SM, Nair VS, Decock J, Elkord E. Immune checkpoints in the tumor microenvironment. In: Seminars in cancer biology. Elsevier; 2020. p. 1–12.

    Google Scholar 

  8. Dong Y, Sun Q, Zhang X. PD-1 and its ligands are important immune checkpoints in cancer. Oncotarger. 2017;8:2171.

    Article  Google Scholar 

  9. Jiang Y, Chen M, Nie H, Yuan YJHV. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother. 2019;15:1111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1(8):1223–5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruan J, Ouyang M, Zhang W, Luo Y, Zhou D. Oncology, The effect of PD-1 expression on tumor-associated macrophage in T cell lymphoma. Clin Transl Oncol. 2021;23:1134–41.

    Article  CAS  PubMed  Google Scholar 

  13. Kono Y, Saito H, Miyauchi W, Shimizu S, Murakami Y, Shishido Y, Miyatani K, Matsunaga T, Fukumoto Y, Nakayama Y. Increased PD-1-positive macrophages in the tissue of gastric cancer are closely associated with poor prognosis in gastric cancer patients. BMC Cancer. 2020;20:1–9.

    Article  Google Scholar 

  14. Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 2018;7:2654–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao G, Latha K, Ott M, Sabbagh A, Marisetty A, Ling X, Zamler D, Doucette TA, Yang Y, Kong LY. Anti–PD-1 induces M1 polarization in the glioma microenvironment and exerts therapeutic efficacy in the absence of CD8 cytotoxic T cells. Clin Cancer Res. 2020;26:4699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu D, Ni Z, Liu X, Feng S, Dong X, Shi X, Zhai J, Mai S, Jiang J, Wang Z. Beyond T cells: understanding the role of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res. 2019;2019.

  17. Liu Y, Zugazagoitia J, Ahmed FS, Henick BS, Gettinger SN, Herbst RS, Schalper KA, Rimm DL. Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. Clin Cancer Res. 2020;26:970–7.

    Article  CAS  PubMed  Google Scholar 

  18. Chen L, Cao MF, Xiao JF, Ma QH, Zhang H, Cai RL, Miao JY, Wang WY, Zhang H, Luo M, Ping YF. Stromal PD-1+ tumor-associated macrophages predict poor prognosis in lung adenocarcinoma. Hum Pathol. 2020;97:68–79.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao Y, Chen Y, Jiang R. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. JITC. 2020;8(1).

  20. Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C, Chen T. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion. J Exp Clin Cancer Res. 2021;40:1–11.

    Article  Google Scholar 

  21. Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, Pavelko KD, Li Y, O’Brien D, Wang C. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. JCI. 2020;130:5380–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCord R, Bolen CR, Koeppen H, Kadel EE III, Oestergaard MZ, Nielsen T, Sehn LH, Venstrom JM. PD-L1 and tumor-associated macrophages in de novo DLBCL. Blood Adv. 2019;3:531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. PNAS. 2017;114:1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hartley GP, Chow L, Ammons DT, Wheat WH, Dow SW. Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol Res. 2018;6:1260–73.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z, Gao M. PD-L1-mediated immunosuppression in glioblastoma is associated with the infiltration and M2-polarization of tumor-associated macrophages. Front Immunol. 2020;11:588552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shinchi Y, Ishizuka S, Komohara Y, Matsubara E, Mito R, Pan C, Yoshii D, Yonemitsu K, Fujiwara Y, Ikeda K. The expression of PD-1 ligand 1 on macrophages and its clinical impacts and mechanisms in lung adenocarcinoma. CII. 2022;71(2022):2645–61.

    CAS  PubMed  Google Scholar 

  27. Chen S, Crabill GA, Pritchard TS, McMiller TL, Wei P, Pardoll DM, Pan F, Topalian SL. Mechanisms regulating PD-L1 expression on tumor and immune cells. JITC. 2019;7:1–12.

    Google Scholar 

  28. Vegliante MC, Mazzara S, Zaccaria GM, De Summa S, Esposito F, Melle F, Motta G, Sapienza MR, Opinto G, Volpe G. NR1H3 (LXRα) is associated with pro-inflammatory macrophages, predicts survival and suggests potential therapeutic rationales in diffuse large b-cell lymphoma. Hematol Oncol. 2022;40:864–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao R, Wan Q, Wang Y, Wu Y, Xiao S, Li Q, Shen X, Zhuang W, Zhou Y, Xia L. M1-like TAMs are required for the efficacy of PD-L1/PD-1 blockades in gastric cancer. Oncoimmunology. 2021;10:1862520.

    Article  Google Scholar 

  30. Sun N-Y, Chen Y-L, Wu W-Y, Lin H-W, Chiang Y-C, Chang C-F, Tai Y-J, Hsu H-C, Chen CA, Sun WZ. Blockade of PD-L1 enhances cancer immunotherapy by regulating dendritic cell maturation and macrophage polarization. Cancer. 2019;11:1400.

    Article  CAS  Google Scholar 

  31. Xu H-Z, Li T-F, Wang C, Ma Y, Liu Y, Zheng M-Y, Liu Z-J-Y, Chen J-B, Li K, Sun SK. Synergy of nanodiamond–doxorubicin conjugates and PD-L1 blockade effectively turns tumor-associated macrophages against tumor cells. J Nanobiotechnology. 2021;19:1–24.

    Article  CAS  Google Scholar 

  32. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139:111708.

    Article  CAS  PubMed  Google Scholar 

  33. Damodar G, Smitha T, Gopinath S, Vijayakumar S, Rao YA. An evaluation of hepatotoxicity in breast cancer patients receiving injection Doxorubicin. Ann Med Res. 2014;4:74–9.

    CAS  Google Scholar 

  34. Barakat BM, Ahmed HI, Bahr HI, Elbahaie M. Protective effect of boswellic acids against doxorubicin-induced hepatotoxicity: impact on Nrf2/HO-1 defense pathway. Oxidative medicine and cellular longevity. 2018;2018.

  35. Su C, Wang H, Liu Y, Guo Q, Zhang L, Li J, Zhou W, Yan Y, Zhou X, Zhang J. Adverse effects of anti-PD-1/PD-L1 therapy in non-small cell lung cancer. Front Oncol. 2020;10:1821.

    Article  Google Scholar 

  36. Hu Y-B, Zhang Q, Li H-J, Michot JM, Liu H-B, Zhan P, Lv T-F, Song Y. Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: a meta-analysis. TLCR. 2017;6:S8.

    PubMed  PubMed Central  Google Scholar 

  37. Zhou X, Yao Z, Bai H, Duan J, Wang Z, Wang X, Zhang X, Xu J, Fei K, Zhang Z. Treatment-related adverse events of PD-1 and PD-L1 inhibitor-based combination therapies in clinical trials: a systematic review and meta-analysis. Lancet Oncol. 2021;22:1265–74.

    Article  CAS  PubMed  Google Scholar 

  38. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sangomla S, Saifi MA, Khurana A, Godugu C. Biology nanoceria ameliorates doxorubicin induced cardiotoxicity: Possible mitigation via reduction of oxidative stress and inflammation. JTEMIN. 2018;47:53–62.

    CAS  Google Scholar 

  40. Kong C-Y, Guo Z, Song P, Zhang X, Yuan Y-P, Teng T, Yan L, Tang Q-Z. Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: oxidative stress and cell death. Int J Biol Sci. 2022;18:760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang Y, Zhang J, Qiu J, Cui S. The PD-1/PD-L1 binding inhibitor BMS-202 suppresses the synthesis and secretion of gonadotropins and enhances apoptosis via p38 MAPK signaling pathway. Drug Dev Res. 2022;83:176–83.

    Article  CAS  PubMed  Google Scholar 

  42. Yang X, Wang W, Ji T. Metabolic Remodeling by the PD-L1 Inhibitor BMS-202 Significantly inhibits cell malignancy in human glioblastomas. Cell Death Dis. 2024;15(3):186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Padmanabhan R, Kheraldine H, Gupta I, Meskin N, Hamad A, Vranic S, Al Moustafa AE. Quantification of the growth suppression of HER2+ breast cancer colonies under the effect of trastuzumab and PD-1/PD-L1 inhibitor. Front Oncol. 2022;12:977664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Padmanabhan R, Kheraldine H, Gupta I, Meskin N, Hamad A, Vranic S, Al Moustafa AE. Mathematical modeling of the growth suppression of HER2+ breast cancer colonies under the effect of trastuzumab and PD-1/PD-L1 inhibitor, (2022).

  45. Anaya-Ruiz M, Perez-Santos M. Small-molecule inhibitor PD-1/PD-L1 interaction for colorectal cancer treatment. Pharm Pat Anal. 2021;10:245–50.

    Article  CAS  Google Scholar 

  46. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63:131–5.

    Article  CAS  PubMed  Google Scholar 

  47. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI. Doxorubicin: the good, the bad and the ugly effect. Curr Med. 2009;16:3267–85.

    CAS  Google Scholar 

  48. Johnson-Arbor K, Dubey R. Doxorubicin, (2017).

  49. Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, Chen A, Zhao YD, Razaq M, Riedinger N. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. 2016;6:38541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Doroshow JH. Role of hydrogen peroxide and hydroxyl radical formation in the killing of Ehrlich tumor cells by anticancer quinones. PNAS. 1986;83:4514–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García-Granda MJ, Vera R, Kochan G. The intracellular signalosome of PD-L1 in cancer cells. Signal transduction and targeted therapy. 2018;3:26.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gato-Cañas M, Zuazo M, Arasanz H, Ibañez-Vea M, Lorenzo L, Fernandez-Hinojal G, Vera R, Smerdou C, Martisova E, Arozarena I. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 2017;20:1818–29.

    Article  PubMed  Google Scholar 

  53. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21:462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hao Q, Idell S, Tang H. M1 macrophages are more susceptible to necroptosis. J Cell Immunol. 2021;3:97.

    PubMed  PubMed Central  Google Scholar 

  56. Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer. 2020;19:1–19.

    Google Scholar 

  57. Ashizawa T, Iizuka A, Tanaka E, Kondou R, Miyata H, Maeda C, Sugino T, Yamaguchi K, Ando T, Ishikawa Y. Antitumor activity of the PD-1/PD-L1 binding inhibitor BMS-202 in the humanized MHC-double knockout NOG mouse. Biomed Res. 2019;40:243–50.

    Article  CAS  PubMed  Google Scholar 

  58. Shang Q, Zhou S, Jiang Y, Wang D, Wang J, Song A, Luan Y. Rational design of a robust antibody-like small-molecule inhibitor nanoplatform for enhanced photoimmunotherapy. ACS Appl Mater Interfaces. 2020;12:40085–93.

    Article  CAS  PubMed  Google Scholar 

  59. Tu K, Yu Y, Wang Y, Yang T, Hu Q, Qin X, Tu J, Yang C, Kong L, Zhang Z. Combination of chidamide-mediated epigenetic modulation with immunotherapy: Boosting tumor immunogenicity and response to PD-1/PD-L1 blockade. ACS Appl Mater Interfaces. 2021;13:39003–17.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Yu J, Li D, Zhao L, Sun B, Wang J, Wang Z, Zhou S, Wang M, Yang Y. Paclitaxel derivative-based liposomal nanoplatform for potentiated chemo-immunotherapy. JCR. 2022;341:812–27.

    Article  CAS  Google Scholar 

  61. Yao Y, Chen H, Tan N. Cancer-cell-biomimetic nanoparticles systemically eliminate hypoxia tumors by synergistic chemotherapy and checkpoint blockade immunotherapy. APSB. 2022;12:2103–19.

    CAS  Google Scholar 

  62. Kuntz KL, Wells RA, Hu J, Yang T, Dong B, Guo H, Woomer AH, Druffel DL, Alabanza A, Tománek D. Control of surface and edge oxidation on phosphorene. ACS Appl Mater Interfaces. 2017;9:9126–35.

    Article  CAS  PubMed  Google Scholar 

  63. Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. 2017;29:1603276.

    Google Scholar 

  64. Qiu M, Wang D, Liang W, Liu L, Zhang Y, Chen X, Sang DK, Xing C, Li Z, Dong BJ. Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. PNAS. 2018;115:501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ling Z, Li P, Zhang SY, Arif N, Zeng YJ. Stability and passivation of 2D group VA elemental materials: black phosphorus and beyond. J Condens Matter Phys. 2022;34:224004.

    Article  CAS  Google Scholar 

  66. Qiu S, Liang J, Hou Y, Zhou X, Zhou Y, Wang J, Zou B, Xing W, Hu Y. Hindered phenolic antioxidant passivation of black phosphorus affords air stability and free radical quenching. J Colloid Interface Sci. 2022;606:1395–409.

    Article  CAS  PubMed  Google Scholar 

  67. Li T-F, Li K, Wang C, Liu X, Wen Y, Xu Y-H, Zhang Q, Zhao Q-Y, Shao M, Li Y-ZJJOCR. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. JCR. 2017;268:128–46.

    Article  CAS  Google Scholar 

  68. Toda G, Yamauchi T, Kadowaki T, Ueki KJSP. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis. STAR Protoc. 2021;2:100246.

    Article  CAS  PubMed  Google Scholar 

  69. Olive PL, Banáth JPJNP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006;1:23–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China [82272718].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design. H-ZX and F-XC conducted experiments in vitro and in vivo. KL, QZ, NH made data analysis. T-FL and Y-HX conducted part of the experiments. YC and XC designed and supervised the work. The first draft of the manuscript was written by XC, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yun Chen or Xiao Chen.

Ethics declarations

Ethics approval

The animal study was reviewed and approved by the Animal Care Committee at Wuhan University.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

All authors give consent for publication.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2950 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HZ., Chen, FX., Li, K. et al. Anti-lung cancer synergy of low-dose doxorubicin and PD-L1 blocker co-delivered via mild photothermia-responsive black phosphorus. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01595-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01595-w

Keywords

Navigation