Skip to main content
Log in

Microneedle patch with pure drug tips for delivery of liraglutide: pharmacokinetics in rats and minipigs

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Transdermal delivery of peptide drugs is almost impossible with conventional penetration enhancers because of epidermal barrier function. Microneedle (MN) patches can bypass the epidermal barrier and have been developed for trans- and intradermal delivery of peptide drugs and vaccines. However, dissolving MN patches are limited by low drug loading capacities due to their small size and admixture of drug and water-soluble excipients. Furthermore, few in vivo pharmacokinetic studies, especially in large animals such as pigs, have been performed to assess post-application systemic drug exposure. Here, we developed a dissolving MN patch with pure liraglutide at the needle tips. The MN patch could load up to 2.21 ± 0.14 mg of liraglutide in a patch size of 0.9 cm2, which was nearly two orders of magnitude higher than that obtained with conventional MN patches of the same size. Raman imaging confirmed that liraglutide was localized at the MN tips. The MN had sufficient mechanical strength to penetrate the epidermis and could deliver up to 0.93 ± 0.04 mg of liraglutide into skin with a dosing variability of less than 6.8%. The MN patch delivery enabled faster absorption of liraglutide than that provided by subcutaneous (S.C.) injection, and achieved relative bioavailability of 69.8% and 46.3% compared to S.C. injection in rats and minipigs, respectively. The MN patch also exhibited similar patterns of anti-hyperglycemic effect in diabetic rats and individual variability in pharmacokinetic parameters as S.C. injection. The liraglutide MN application was well tolerated; no skin irritation was observed in minipigs except for mild erythema occurring within 4 h after once daily administration for 7 days at the same site. Our preclinical study suggests that MN patch with pure drug needle tips might offer a safe and effective alternative to S.C. injection for administration of liraglutide.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  1. Overview of Diabetes. Available from: https://www.who.int/health-topics/diabetes/diabetes#tab=tab_1.

  2. Perry CM. Liraglutide: a review of its use in the management of type 2 diabetes mellitus. Drugs. 2011;71(17):2347–73.

    Article  CAS  PubMed  Google Scholar 

  3. Dumont C, Beloqui A, Miolane C, Bourgeois S, Préat V, Fessi H, Jannin V. Solid lipid nanocarriers diffuse effectively through mucus and enter intestinal cells – but where is my peptide? Int J Pharm. 2020;586:119581.

    Article  CAS  PubMed  Google Scholar 

  4. Meece J. Pharmacokinetics and pharmacodynamics of liraglutide, a long-acting, potent glucagon-like peptide-1 analog. Pharmacotherapy. 2009;29(12 Pt 2):33S-42S.

    CAS  PubMed  Google Scholar 

  5. Tran KL, Park YI, Pandya S, Muliyil NJ, Jensen BD, Huynh K, Nguyen QT. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes. Am Health Drug Benefits. 2017;10(4):178–88.

    PubMed  PubMed Central  Google Scholar 

  6. Adhikari BB, Goodson JL, Chu SY, Rota PA, Meltzer MI. Assessing the potential cost-effectiveness of microneedle patches in childhood measles vaccination programs: the case for further research and development. Drugs R D. 2016;16(4):327–38.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Usach I, Martinez R, Festini T, Peris JE. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv Ther. 2019;36(11):2986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tamplin SA, Davidson D, Powis B, O’Leary Z. Issues and options for the safe destruction and disposal of used injection materials. Waste Manag. 2005;25(6):655–65.

    Article  CAS  PubMed  Google Scholar 

  9. Stolbrink M, Thomson H, Hadfield RM, Ozoh OB, Nantanda R, Jayasooriya S, Allwood B, Halpin DMG, Salvi S, de Oca MM, Mortimer K, Rylance S. The availability, cost, and affordability of essential medicines for asthma and COPD in low-income and middle-income countries: a systematic review. Lancet Glob Health. 2022;10(10):e1423–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.

    Article  Google Scholar 

  11. Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022;12(4):758–91.

    Article  PubMed  Google Scholar 

  12. Andrews SN, Jeong E, Prausnitz MR. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res. 2013;30(4):1099–109.

    Article  CAS  PubMed  Google Scholar 

  13. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliver Rev. 2012;64(14):1547–68.

    Article  CAS  Google Scholar 

  14. Liu T, Chen M, Fu J, Sun Y, Lu C, Quan G, Pan X, Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm Sin B. 2021;11(8):2326–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirkby M, Hutton ARJ, Donnelly RF. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharm Res. 2020;37(6):1–18.

    Article  Google Scholar 

  16. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58.

    Article  CAS  PubMed  Google Scholar 

  17. Gowda A, Healey B, Ezaldein H, Merati M. A systematic review examining the potential adverse effects of microneedling. J Clin Aesthet Dermatol. 2021;14(1):45–54.

    PubMed  PubMed Central  Google Scholar 

  18. Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: principle, perspectives, and practices. Drug Deliv Transl Res. 2023. https://doi.org/10.1007/s13346-023-01475-9.

  20. Leone M, Monkare J, Bouwstra JA, Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm Res. 2017;34(11):2223–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rojekar S, Vora LK, Tekko IA, Volpe-Zanutto F, McCarthy HO, Vavia PR, Donnelly RF. Etravirine-loaded dissolving microneedle arrays for long-acting delivery. Eur J Pharm Biopharm. 2021;165:41–51.

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Li S, Fan X, Prausnitz MR. Microneedle patch designs to increase dose administered to human subjects. J Control Release. 2021;339:350–60.

    Article  CAS  PubMed  Google Scholar 

  23. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.

    Article  CAS  PubMed  Google Scholar 

  24. Jang M, Kang BM, Yang H, Ohn J, Kwon O, Jung H. High-dose steroid dissolving microneedle for relieving atopic dermatitis. Adv Healthc Mater. 2021;10(7):e2001691.

    Article  PubMed  Google Scholar 

  25. Li S, Xia D, Prausnitz MR. Efficient drug delivery into skin using a biphasic dissolvable microneedle patch with water-insoluble backing. Adv Funct Mater. 2021;31(44):2103359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perez Cuevas MB, Kodani M, Choi Y, Joyce J, O’Connor SM, Kamili S, Prausnitz MR. Hepatitis B vaccination using a dissolvable microneedle patch is immunogenic in mice and rhesus macaques. Bioeng Transl Med. 2018;3(3):186–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee IC, Lin W-M, Shu J-C, Tsai S-W, Chen C-H, Tsai M-T. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J Biomed Mater Res, Part A. 2017;105(1):84–93.

    Article  CAS  Google Scholar 

  28. Chen J, Qiu Y, Zhang S, Gao Y. Dissolving microneedle-based intradermal delivery of interferon-α-2b. Drug Dev Ind Pharm. 2016;42(6):890–6.

    Article  CAS  PubMed  Google Scholar 

  29. McCrudden MT, Alkilani AZ, McCrudden CM, McAlister E, McCarthy HO, Woolfson AD, Donnelly RF. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control Release. 2014;180(100):71–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ripolin A, Quinn J, Larraneta E, Vicente-Perez EM, Barry J, Donnelly RF. Successful application of large microneedle patches by human volunteers. Int J Pharm. 2017;521(1–2):92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kathuria H, Li H, Pan J, Lim SH, Kochhar JS, Wu C, Kang L. Large size microneedle patch to deliver lidocaine through skin. Pharm Res. 2016;33(11):2653–67.

    Article  CAS  PubMed  Google Scholar 

  32. You J, Yang C, Han J, Wang H, Zhang W, Zhang Y, Lu Z, Wang S, Cai R, Li H, Yu J, Gao J, Zhang Y, Gu Z. Ultrarapid-acting microneedles for immediate delivery of biotherapeutics. Adv Mater. 2023;35(45):e2304582.

    Article  PubMed  Google Scholar 

  33. You J, Juhng S, Song J, Park J, Jang M, Kang G, Yang H, Min HS, Shin J, Lee S, Ko HW, Jung H. Egg microneedle for transdermal delivery of active liraglutide. Adv Healthc Mater. 2023;12(9):e2202473.

    Article  PubMed  Google Scholar 

  34. Juhng S, Song J, You J, Park J, Yang H, Jang M, Kang G, Shin J, Ko HW, Jung H. Fabrication of liraglutide-encapsulated triple layer hyaluronic acid microneedles (TLMs) for the treatment of obesity. Lab Chip. 2023;23(10):2378–88.

    Article  CAS  PubMed  Google Scholar 

  35. Rabiei M, Kashanian S, Bahrami G, Derakhshankhah H, Barzegari E, Samavati SS, McInnes SJP. Dissolving microneedle-assisted long-acting Liraglutide delivery to control type 2 diabetes and obesity. Eur J Pharm Sci. 2021;167(106040):1–9.

    Google Scholar 

  36. Aich K, Singh T, Dang S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv Transl Res. 2022;12(7):1556–68.

    Article  CAS  PubMed  Google Scholar 

  37. Azizoglu E, Ozer O, Prausnitz MR. Fabrication of pure-drug microneedles for delivery of montelukast sodium. Drug Deliv Transl Res. 2022;12(2):444–58.

    Article  CAS  PubMed  Google Scholar 

  38. Lee Y, Li W, Tang J, Schwendeman SP, Prausnitz MR. Immediate detachment of microneedles by interfacial fracture for sustained delivery of a contraceptive hormone in the skin. J Control Release. 2021;337:676–85.

    Article  CAS  PubMed  Google Scholar 

  39. Li W, Tang J, Terry RN, Li S, Brunie A, Callahan RL, Noel RK, Rodríguez CA, Schwendeman SP, Prausnitz MR. Long-acting reversible contraception by effervescent microneedle patch. Sci Adv. 2019;5:eaaw8145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cummings BP, Stanhope KL, Graham JL, Baskin DG, Griffen SC, Nilsson C, Sams A, Knudsen LB, Raun K, Havel PJ. Chronic administration of the glucagon-like peptide-1 analog, liraglutide, delays the onset of diabetes and lowers triglycerides in UCD-T2DM rats. Diabetes. 2010;59(10):2653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Basalay MV, Davidson SM, Yellon DM. Neuroprotection in rats following ischaemia-reperfusion injury by GLP-1 analogues—Liraglutide and Semaglutide. Cardiovasc Drugs Ther. 2019;33(6):661–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ivanov AN, Lagutina DD, Saveleva MS, Popyhova EB, Stepanova TV, Savkina AA, Pylaev TE, Kuznetsova NA. Effect of liraglutide on microcirculation in rat model with absolute insulin deficiency. Microvasc Res. 2021;138:104206.

  43. Pedersen K-M, Gradel AKJ, Ludvigsen TP, Christoffersen BØ, Fuglsang-Damgaard CA, Bendtsen KM, Madsen SH, Manfé V, Refsgaard HHF. Optimization of pig models for translation of subcutaneous pharmacokinetics of therapeutic proteins: Liraglutide, insulin aspart and insulin detemir. Transl Res. 2022;239:71–84.

    Article  CAS  PubMed  Google Scholar 

  44. Parola A. Center for Drug Evaluation and Research, Pharmacology Review of Saxenda™. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206321Orig1s000PharmRedt.pdf.

  45. Raun K, von Voss P, Knudsen LB. Liraglutide, a once-daily human Glucagon-like peptide-1 analog, minimizes food intake in severely obese Minipigs. Obesity. 2012;15(7):1710–6.

    Article  Google Scholar 

  46. Shapiro AMJ, Knudsen LB, Bonner-Weir S, Lock J, Edgar R, Davis J, Pawlick R, Truong W, Al-Saif F, Kin T, Toso C, Merani S, Emamaullee JA. Porcine marginal mass islet autografts resist metabolic failure over time and are enhanced by early treatment with Liraglutide. Endocrinology. 2009;150(5):2145–52.

    Article  PubMed  Google Scholar 

  47. Dong S, Gu Y, Wei G, Si D, Liu C. Determination of liraglutide in rat plasma by a selective liquid chromatography-tandem mass spectrometry method: Application to a pharmacokinetics study. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1091:29–35.

    Article  CAS  PubMed  Google Scholar 

  48. Vassilieva EV, Li S, Korniychuk H, Taylor DM, Wang S, Prausnitz MR, Compans RW. cGAMP/Saponin adjuvant combination improves protective response to influenza vaccination by microneedle patch in an aged mouse model. Front Immunol. 2020;11: 583251.

    Article  CAS  PubMed  Google Scholar 

  49. Romgens AM, Bader DL, Bouwstra JA, Baaijens FPT, Oomens CWJ. Monitoring the penetration process of single microneedles with varying tip diameters. J Mech Behav Biomed Mater. 2014;40:397–405.

    Article  CAS  PubMed  Google Scholar 

  50. Barbero AM, Frasch HF. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol In Vitro. 2009;23(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  51. Gad AS, Maibach HI. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations – an overview. Skin Pharmacol Appl Skin Physiol. 2000;13:229–34.

    Article  Google Scholar 

  52. Zhuang J, Rao F, Wu D, Huang Y, Xu H, Gao W, Zhang J, Sun J. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery. Eur J Pharm Biopharm. 2020;157:66–73.

    Article  CAS  PubMed  Google Scholar 

  53. Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: applications and growing therapeutic potential. J Control Release. 2022;348:186–205.

    Article  CAS  PubMed  Google Scholar 

  54. Bonfante G, Lee H, Bao L, Park J, Takama N, Kim B. Comparison of polymers to enhance mechanical properties of microneedles for bio-medical applications. Micro and Nano Systems Letters. 2020;8(13):1–13.

    Google Scholar 

  55. Wang QL, Ren JW, Chen BZ, Jin X, Zhang CY, Guo XD. Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. J Ind Eng Chem. 2018;59:251–8.

    Article  CAS  Google Scholar 

  56. Ando D, Miyatsuji M, Sakoda H, Yamamoto E, Miyazaki T, Koide T, Sato Y, Izutsu KI. Mechanical characterization of dissolving microneedles: factors affecting physical strength of needles. Pharmaceutics. 2024;16(200):1–14.

    Google Scholar 

  57. Bauleth-Ramos T, El-Sayed N, Fontana F, Lobita M, Shahbazi M-A, Santos HA. Recent approaches for enhancing the performance of dissolving microneedles in drug delivery applications. Mater Today. 2023;63:239–87.

    Article  CAS  Google Scholar 

  58. Hou A, Quan G, Yang B, Lu C, Chen M, Yang D, Wang L, Liu H, Pan X, Wu C. Rational design of rapidly separating dissolving microneedles for precise drug delivery by balancing the mechanical performance and disintegration rate. Adv Healthc Mater. 2019;8(21):e1900898.

    Article  PubMed  Google Scholar 

  59. Larraneta E, Moore J, Vicente-Perez EM, Gonzalez-Vazquez P, Lutton R, Woolfson AD, Donnelly RF. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472(1–2):65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Makvandi P, Kirkby M, Hutton ARJ, Shabani M, Yiu CKY, Baghbantaraghdari Z, Jamaledin R, Carlotti M, Mazzolai B, Mattoli V, Donnelly RF. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nanomicro Lett. 2021;13(1):93.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Q, Yao G, Dong P, Gong Z, Li G, Zhang K, Wu C. Investigation on fabrication process of dissolving microneedle arrays to improve effective needle drug distribution. Eur J Pharm Sci. 2015;66:148–56.

    Article  CAS  PubMed  Google Scholar 

  62. Chu LY, Choi SO, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J Pharm Sci. 2010;99(10):4228–38.

    Article  CAS  PubMed  Google Scholar 

  63. Yang Y, Chu HQ, Zhang Y, Xu LL, Luo RZ, Zheng H, Yin TL, Li Z. Rapidly separable bubble microneedle patch for effective local anesthesia. Nano Res. 2022;15(9):8336–44.

    Article  CAS  Google Scholar 

  64. Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011;149(3):242–9.

    Article  CAS  PubMed  Google Scholar 

  65. Oh HS, Choi M, Lee TS, An Y, Park EJ, Kim TH, Shin S, Shin BS. Pharmacokinetics and brain distribution of the therapeutic peptide liraglutide by a novel LC–MS/MS analysis. J Analyt Sci Technol. 2023;14:19(1):1–11.

    Google Scholar 

  66. Jacobsen LV, Flint A, Olsen AK, Ingwersen SH. Liraglutide in type 2 diabetes mellitus: clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2016;55(6):657–72.

    Article  CAS  PubMed  Google Scholar 

  67. Malm-Erjefalt M, Bjornsdottir I, Vanggaard J, Helleberg H, Larsen U, Oosterhuis B, van Lier JJ, Zdravkovic M, Olsen AK. Metabolism and excretion of the once-daily human glucagon-like peptide-1 analog liraglutide in healthy male subjects and its in vitro degradation by dipeptidyl peptidase IV and neutral endopeptidase. Drug Metab Dispos. 2010;38(11):1944–53.

    Article  CAS  PubMed  Google Scholar 

  68. Elbrond B, Jakobsen G, Larsen S, Agerso H, Jensen LB, Rolan P, Sturis J, Hatorp V, Zdravkovic M. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care. 2002;25(8):1398–404.

    Article  CAS  PubMed  Google Scholar 

  69. Rigato M, Fadini GP. Comparative effectiveness of liraglutide in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:107–20.

    PubMed  PubMed Central  Google Scholar 

  70. Daddona PE, Matriano JA, Mandema J, Maa YF. Parathyroid hormone (1–34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm Res. 2011;28(1):159–65.

    Article  CAS  PubMed  Google Scholar 

  71. Sabri AH, Kim Y, Marlow M, Scurr DJ, Segal J, Banga AK, Kagan L, Lee JB. Intradermal and transdermal drug delivery using microneedles - Fabrication, performance evaluation and application to lymphatic delivery. Adv Drug Deliv Rev. 2020;153:195–215.

    Article  CAS  PubMed  Google Scholar 

  72. Harvey AJ, Kaestner SA, Sutter DE, Harvey NG, Mikszta JA, Pettis RJ. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharm Res. 2011;28(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  73. Burton SA, Ng CY, Simmers R, Moeckly C, Brandwein D, Gilbert T, Johnson N, Brown K, Alston T, Prochnow G, Siebenaler K, Hansen K. Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res-Dordr. 2011;28(1):31–40.

    Article  CAS  Google Scholar 

  74. Jin X, Zhu DD, Chen BZ, Ashfaq M, Guo XD. Insulin delivery systems combined with microneedle technology. Adv Drug Deliv Rev. 2018;127:119–37.

    Article  CAS  PubMed  Google Scholar 

  75. Pettis RJ, Hirsch L, Kapitza C, Nosek L, Hovelmann U, Kurth HJ, Sutter DE, Harvey NG, Heinemann L. Microneedle-based intradermal versus subcutaneous administration of regular human insulin or insulin lispro: pharmacokinetics and postprandial glycemic excursions in patients with type 1 diabetes. Diabetes Technol The. 2011;13(4):443–50.

    Article  Google Scholar 

  76. Pettis RJ, Ginsberg B, Hirsch L, Sutter D, Keith S, McVey E, Harvey NG, Hompesch M, Nosek L, Kapitza C, Heinemann L. Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection. Diabetes Technol The. 2011;13(4):435–42.

    Article  CAS  Google Scholar 

  77. Rehman NU, Song C, Kim J, Noh I, Rhee YS, Chung HJ. Pharmacokinetic evaluation of a novel donepezil-loaded dissolving microneedle patch in rats. Pharmaceutics. 2021;14, 5(1):1–15.

    Google Scholar 

  78. Lee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7(4):531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu Z, Luo H, Lu W, Luan H, Wu Y, Luo J, Wang Y, Pi J, Lim CY, Wang H. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res. 2014;31(12):3348–60.

    Article  CAS  PubMed  Google Scholar 

  80. Mach H, Gregory SM, Mackiewicz A, Mittal S, Lalloo A, Kirchmeier M, Shameem M. Electrostatic interactions of monoclonal antibodies with subcutaneous tissue. Ther Deliv. 2011;2(6):727–36.

    Article  CAS  PubMed  Google Scholar 

  81. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153–63.

    Article  CAS  PubMed  Google Scholar 

  82. Collins DS, Kourtis LC, Thyagarajapuram NR, Sirkar R, Kapur S, Harrison MW, Bryan DJ, Jones GB, Wright JM. Optimizing the bioavailability of subcutaneously administered biotherapeutics through mechanochemical drivers. Pharm Res. 2017;34(10):2000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martin MD, Weldon WC, Zarnitsyn VG, Koutsonanos DG, Akbari H, Skountzou I, Jacob J, Prausnitz MR, Compans RW. Local response to microneedle-based influenza immunization in the skin. MBio. 2012;3(2):e00012-00012.

    Google Scholar 

  84. Rapoport AM, Ameri M, Lewis H, Kellerman DJ. Development of a novel zolmitriptan intracutaneous microneedle system (Qtrypta™) for the acute treatment of migraine. Pain Manag. 2020;10(6):359–66.

    Article  PubMed  Google Scholar 

  85. Avcil M, Celik A. Microneedles in drug delivery: progress and challenges. Micromachines (Basel). 2021;12(12):1231.

    Google Scholar 

  86. Al-Kasasbeh R, Brady AJ, Courtenay AJ, Larraneta E, McCrudden MTC, O’Kane D, Liggett S, Donnelly RF. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv Transl Res. 2020;10(3):690–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. van der Maaden K, Sekerdag E, Jiskoot W, Bouwstra J. Impact-insertion applicator improves reliability of skin penetration by solid microneedle arrays. AAPS J. 2014;16(4):681–4.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Levin C, Bonduelle O, Nuttens C, Primard C, Verrier B, Boissonnas A, Combadiere B. Critical role for skin-derived migratory DCs and langerhans cells in T(FH) and GC responses after intradermal immunization. J Invest Dermatol. 2017;137(9):1905–13.

    Article  CAS  PubMed  Google Scholar 

  89. Egunsola O, Clement F, Taplin J, Mastikhina L, Li JW, Lorenzetti DL, Dowsett LE, Noseworthy T. Immunogenicity and safety of reduced-dose intradermal vs intramuscular influenza vaccines: a systematic review and meta-analysis. JAMA Netw Open. 2021;4(2):e2035693.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the support of Hundred Talents Program of Sun Yat-Sen University, Guangdong Basic and Applied Basic Research Foundation and Shenzhen Science and Technology Program.

Funding

This project was mainly supported by Hundred Talents Program of Sun Yat-Sen University and partially supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No.2022A1515012156), Shenzhen Science and Technology Program (Grant No. 20220817214511001).

Author information

Authors and Affiliations

Authors

Contributions

D.N.X. conceived the idea; H.B.L., J.B.L., Z.Y.Y., J.H., J.H.Y., Y.C., Y.L.H., D.D.P., J.W.H. performed the experiments and analyzed the data; D.N.X. and H.B.L wrote and edited the manuscript; D.N.X. supervised the project and obtained the fundings.

Corresponding author

Correspondence to Dengning Xia.

Ethics declarations

Ethics approval and consent to participate

All animal experiment procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Sun Yat-sen University and Dongguan HEC Biopharmaceutical R&D Co., Ltd.

Consent for publication

All authors agree to publish this article in Drug Delivery and Translational Research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Liu, J., Hou, Y. et al. Microneedle patch with pure drug tips for delivery of liraglutide: pharmacokinetics in rats and minipigs. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01582-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01582-1

Keywords

Navigation