Skip to main content

Advertisement

Log in

State of the art in pediatric nanomedicines

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Lehmann B. Regulation (EC) No 1901/2006 on medicinal products for paediatric use & clinical research in vulnerable populations. Child Adolesc Psychiatry Ment Health. 2008;2:37. https://doi.org/10.1186/1753-2000-2-37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abdel-Rahman SM, Amidon GL, Kaul A, Lukacova V, Vinks AA, Knipp GT. Summary of the National Institute of Child Health and Human Development-Best Pharmaceuticals for Children Act Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System Working Group. Clin Ther. 2012;34:S11–24. https://doi.org/10.1016/j.clinthera.2012.09.014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Avant D, Wharton GT, Murphy D. Characteristics and changes of pediatric therapeutic trials under the Best Pharmaceuticals for Children Act. J Pediatr. 2018;192:8–12. https://doi.org/10.1016/j.jpeds.2017.08.048.

    Article  CAS  PubMed  Google Scholar 

  4. Ren Z, Zajicek A. Review of the Best Pharmaceuticals for Children Act and the Pediatric Research Equity Act: what can the obstetric community learn from the pediatric experience? Semin Perinatol. 2015;39:530–1. https://doi.org/10.1053/j.semperi.2015.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Turner MA, Catapano M, Hirschfeld S, Giaquinto C. Paediatric drug development: the impact of evolving regulations. Adv Drug Deliv Rev. 2014;73:2–13. https://doi.org/10.1016/j.addr.2014.02.003.

    Article  CAS  PubMed  Google Scholar 

  6. Maphalle LNF, Michniak-Kohn BB, Ogunrombi MO, Adeleke OA. Pediatric tuberculosis management: a global challenge or breakthrough? Children. 2022;9:1120. https://doi.org/10.3390/children9081120.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Batchelor HK, Kendall R, Desset-Brethes S, Alex R, Ernest TB. Application of in vitro biopharmaceutical methods in development of immediate release oral dosage forms intended for paediatric patients. Eur J Pharm Biopharm. 2013;85:833–42. https://doi.org/10.1016/j.ejpb.2013.04.015.

    Article  CAS  PubMed  Google Scholar 

  8. Batchelor H. Paediatric biopharmaceutics classification system: current status and future decisions. Int J Pharm. 2014;469:251–3. https://doi.org/10.1016/j.ijpharm.2014.02.046.

    Article  CAS  PubMed  Google Scholar 

  9. Rose K. The challenges of pediatric drug development. Curr Ther Res. 2019;90:128–34. https://doi.org/10.1016/j.curtheres.2019.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Katzung BG, Trevor AJ. Basic and clinical pharmacology 15e. McGraw-Hill Education. 2020.

    Google Scholar 

  11. Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics. 2011;3:53–72. https://doi.org/10.3390/pharmaceutics3010053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu G, Zheng Q-S, Li G-F. Similarities and differences in gastrointestinal physiology between neonates and adults: a physiologically based pharmacokinetic modeling perspective. AAPS J. 2014;16:1162–6. https://doi.org/10.1208/s12248-014-9652-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations, The. J Pediatr Pharmacol Ther. 2014;19:262–76. https://doi.org/10.5863/1551-6776-19.4.262.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sage DP, Kulczar C, Roth W, Liu W, Knipp GT. Persistent pharmacokinetic challenges to pediatric drug development. Front Genet 5. 2014. https://www.frontiersin.org/articles/10.3389/fgene.2014.00281 (accessed June 5, 2023).

  15. Job KM, Gamalo M, Ward RM. Pediatric age groups and approach to studies. Drug Inf J. 2019;53:584–9. https://doi.org/10.1177/2168479019856572.

    Article  Google Scholar 

  16. Mian AN, Schwartz GJ. Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis. 2017;24:348–56. https://doi.org/10.1053/j.ackd.2017.09.011.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muhari-Stark E, Burckart GJ. Glomerular filtration rate estimation formulas for pediatric and neonatal use, The. J Pediatr Pharmacol Ther. 2018;23:424–31. https://doi.org/10.5863/1551-6776-23.6.424.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krekels EH, Rower JE, Constance JE, Knibbe CA, Sherwin CM. Chapter 8 - Hepatic drug metabolism in pediatric patients, in: W. Xie (Ed.). Drug metabolism in diseases. Academic Press, Boston, 2017: pp. 181–206. https://doi.org/10.1016/B978-0-12-802949-7.00008-0.

  19. Yellepeddi VK, Joseph A, Nance E. Pharmacokinetics of nanotechnology-based formulations in pediatric populations. Adv Drug Deliv Rev. 2019;151–152:44–55. https://doi.org/10.1016/j.addr.2019.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giacoia GP, Taylor-Zapata P, Zajicek A. Eunice Kennedy Shriver National Institute of Child Health and Human Development Pediatrics Formulation Initiative: Proceedings from the Second Workshop on Pediatric Formulations. Clin Ther. 2012;34:S1–10. https://doi.org/10.1016/j.clinthera.2012.09.013.

    Article  PubMed  Google Scholar 

  21. ADELEKE O.A. Method for encapsulating pharmaceutical actives (European Patent No. EP3291795B1), EP3291795B1. 2019. https://patents.google.com/patent/EP3291795B1/en (accessed November 10, 2023).

  22. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharmaceutics. 2011;8:2101–41. https://doi.org/10.1021/mp200394t.

    Article  CAS  Google Scholar 

  23. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24:1159–66. https://doi.org/10.1016/j.copbio.2013.02.020.

    Article  CAS  PubMed  Google Scholar 

  24. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev. 2015;115:10907–37. https://doi.org/10.1021/cr500314d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lammers TL, Kiessling F, Hennink WE, Storm G. Gert, Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress, in: Nano-enabled medical applications, Jenny Stanford Publishing, 2020.

  26. Kreyling W. Nanomedicine : an ESF-European Medical Councils (EMRC) forword look report 2005. 2005.

  27. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–30. https://doi.org/10.1096/fj.04-2747rev.

    Article  CAS  PubMed  Google Scholar 

  28. Chavda VP. Chapter 4 - Nanobased nano drug delivery: a comprehensive review, in: S.S. Mohapatra, S. Ranjan, N. Dasgupta, R.K. Mishra, S. Thomas (Eds.). Applications of targeted nano drugs and delivery systems. Elsevier. 2019: pp. 69–92. https://doi.org/10.1016/B978-0-12-814029-1.00004-1.

  29. Sosnik A, Carcaboso AM. Nanomedicines in the future of pediatric therapy. Adv Drug Deliv Rev. 2014;73:140–61. https://doi.org/10.1016/j.addr.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  30. Barenholz YC. Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–34. https://doi.org/10.1016/j.jconrel.2012.03.020.

    Article  CAS  PubMed  Google Scholar 

  31. Swank Kimberley. Harinstein, Lisa, Muñoz, Monica, Pediatric postmarketing pharmacovigilance review. Food and Drug Administration. 2017. https://www.fda.gov/files/advisory%20committees/published/Emend-%28aprepitant%29-Capsule-and-Oral-Suspension-Pediatric-Postmarketing-Pharmacovigilance-Review.pdf

    Google Scholar 

  32. Office of the Commissioner. Pediatric Oncology Drug Approval. FDA 2023. https://www.fda.gov/about-fda/oncology-center-excellence/pediatric-oncology-drug-approvals (accessed August 15, 2023).

  33. Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76:485–500. https://doi.org/10.1007/s40265-016-0538-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. N. Nieto González, A. Obinu, G. Rassu, P. Giunchedi, E. Gavini, Polymeric and lipid nanoparticles: which applications in pediatrics?, Pharmaceutics 13 (2021) 670. https://doi.org/10.3390/pharmaceutics13050670.

  35. Shah NN, Merchant MS, Cole DE, Jayaprakash N, Bernstein D, Delbrook C, Richards K, Widemann BC, Wayne AS. Vincristine sulfate liposomes injection (VSLI, Marqibo®): results from a phase I study in children, adolescents, and young adults with refractory solid tumors or leukemias. Pediatr Blood Cancer. 2016;63:997–1005. https://doi.org/10.1002/pbc.25937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peyrl A, Sauermann R, Chocholous M, Azizi AA, Jäger W, Höferl M, Slavc I. Pharmacokinetics and toxicity of intrathecal liposomal cytarabine in children and adolescents following age-adapted dosing. Clin Pharmacokinet. 2014;53:165–73. https://doi.org/10.1007/s40262-013-0106-1.

    Article  CAS  PubMed  Google Scholar 

  37. Batchelor HK, Marriott JF. Formulations for children: problems and solutions. Br J Clin Pharmacol. 2015;79:405–18. https://doi.org/10.1111/bcp.12268.

    Article  PubMed  PubMed Central  Google Scholar 

  38. M.S. Alqahtani, M. Kazi, M.A. Alsenaidy, M.Z. Ahmad, Advances in oral drug delivery, Frontiers in Pharmacology 12 (2021). https://www.frontiersin.org/articles/https://doi.org/10.3389/fphar.2021.618411 (accessed May 22, 2023).

  39. Rampedi PN, Ogunrombi MO, Wesley-Smith J, Adeleke OA. A micro-configured multiparticulate reconstitutable suspension powder of fixed dose rifampicin and pyrazinamide: optimal fabrication and in vitro quality evaluation. Pharmaceutics. 2022;15:64. https://doi.org/10.3390/pharmaceutics15010064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kean EA, Adeleke OA. Orally disintegrating drug carriers for paediatric pharmacotherapy. Eur J Pharm Sci. 2023;182: 106377. https://doi.org/10.1016/j.ejps.2023.106377.

    Article  CAS  PubMed  Google Scholar 

  41. Kakodkar K, Schroeder JW. Pediatric dysphagia. Pediatr Clin. 2013;60:969–77. https://doi.org/10.1016/j.pcl.2013.04.010.

    Article  Google Scholar 

  42. E. Umay, S. Eyigor, E. Giray, E. Karadag Saygi, B. Karadag, N. Durmus Kocaaslan, D. Yuksel, A.M. Demir, E. Tutar, C. Tikiz, E. Gurcay, Z. Unlu, P. Celik, E. Unlu Akyuz, G. Mengu, S. Bengisu, S. Alicura, N. Unver, N. Yekteusaklari, C. Uz, M. Cikili Uytun, F. Bagcier, E. Tarihci, M.S. Akaltun, I. Ayranci Sucakli, D. Cankurtaran, Z. Aykın, R. Aydın, F. Nazli, Pediatric dysphagia overview: best practice recommendation study by multidisciplinary experts, World J Pediatr 18 (2022) 715–724. https://doi.org/10.1007/s12519-022-00584-8.

  43. Dodrill P, Gosa MM. Pediatric dysphagia: physiology, assessment, and management. Ann Nutr Metab. 2015;66:24–31. https://doi.org/10.1159/000381372.

    Article  CAS  PubMed  Google Scholar 

  44. Lawlor CM, Choi S. Diagnosis and management of pediatric dysphagia: a review. JAMA Otolaryngology-Head & Neck Surgery. 2020;146:183–91. https://doi.org/10.1001/jamaoto.2019.3622.

    Article  Google Scholar 

  45. Preis M, Breitkreutz J. Pediatric drug development and dosage form design. AAPS PharmSciTech. 2017;18:239–40. https://doi.org/10.1208/s12249-016-0705-x.

    Article  PubMed  Google Scholar 

  46. Ali AA, Charoo NA, Abdallah DB. Pediatric drug development: formulation considerations. Drug Dev Ind Pharm. 2014;40:1283–99. https://doi.org/10.3109/03639045.2013.850713.

    Article  CAS  PubMed  Google Scholar 

  47. Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Delivery. 2018;25:1694–705. https://doi.org/10.1080/10717544.2018.1501119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D. Sahoo, R. Bandaru, S.K. Samal, R. Naik, P. Kumar, P. Kesharwani, R. Dandela, Chapter 9 - Oral drug delivery of nanomedicine, in: P. Kesharwani, S. Taurin, K. Greish (Eds.), Theory and applications of nonparenteral nanomedicines, Academic Press, 2021: pp. 181–207. https://doi.org/10.1016/B978-0-12-820466-5.00009-0.

  49. Fan Y, Chen H, Huang Z, Zhu J, Wan F, Peng T, Pan X, Huang Y, Wu C. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int J Pharm. 2020;575: 118875. https://doi.org/10.1016/j.ijpharm.2019.118875.

    Article  CAS  PubMed  Google Scholar 

  50. Krieser K, Emanuelli J, Daudt RM, Bilatto S, Willig JB, Guterres SS, Pohlmann AR, Buffon A, Correa DS, Külkamp-Guerreiro IC. Taste-masked nanoparticles containing Saquinavir for pediatric oral administration. Mater Sci Eng, C. 2020;117: 111315. https://doi.org/10.1016/j.msec.2020.111315.

    Article  CAS  Google Scholar 

  51. Zou Y, Mei D, Yuan J, Han J, Xu J, Sun N, He H, Yang C, Zhao L. Preparation, characterization, pharmacokinetic, and therapeutic potential of novel 6-mercaptopurine-loaded oral nanomedicines for acute lymphoblastic leukemia. Int J Nanomedicine. 2021;16:1127–41. https://doi.org/10.2147/IJN.S290466.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deng Y, Shen L, Yang Y, Shen J. Development of nanoparticle-based orodispersible palatable pediatric formulations. Int J Pharm. 2021;596: 120206. https://doi.org/10.1016/j.ijpharm.2021.120206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Omidian H, Mfoafo K. Exploring the potential of nanotechnology in pediatric healthcare: advances, challenges, and future directions. Pharmaceutics. 2023;15:1583. https://doi.org/10.3390/pharmaceutics15061583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zisowsky J, Krause A, Dingemanse J. Drug development for pediatric populations: regulatory aspects. Pharmaceutics. 2010;2:364–88. https://doi.org/10.3390/pharmaceutics2040364.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lavan M, Byrn SR, Knipp G. Pediatric formulations: knowledge gaps limiting the expedited preclinical to clinical translation in children. AAPS PharmSciTech. 2019;20:73. https://doi.org/10.1208/s12249-018-1253-3.

    Article  CAS  PubMed  Google Scholar 

  56. Rodríguez-Nogales C, González-Fernández Y, Aldaz A, Couvreur P, Blanco-Prieto MJ. Nanomedicines for pediatric cancers. ACS Nano. 2018;12:7482–96. https://doi.org/10.1021/acsnano.8b03684.

    Article  CAS  PubMed  Google Scholar 

  57. Lagler FB, Hirschfeld S, Kindblom JM. Challenges in clinical trials for children and young people. Arch Dis Child. 2021;106:321–5. https://doi.org/10.1136/archdischild-2019-318676.

    Article  PubMed  Google Scholar 

  58. Yang S, Wallach M, Krishna A, Kurmasheva R, Sridhar S. Recent developments in nanomedicine for pediatric cancer. J Clin Med. 2021;10:1437. https://doi.org/10.3390/jcm10071437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M.S. Marques, L.A. Lima, F. Poletto, R.V. Contri, I.C. Kulkamp Guerreiro, Nanotechnology for the treatment of paediatric diseases: a review, Journal of Drug Delivery Science and Technology 75 (2022) 103628. https://doi.org/10.1016/j.jddst.2022.103628.

  60. Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric drug development: reviewing challenges and opportunities by tracking innovative therapies. Pharmaceutics. 2023;15:2431. https://doi.org/10.3390/pharmaceutics15102431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49. https://doi.org/10.1016/j.jconrel.2017.03.008.

    Article  CAS  PubMed  Google Scholar 

  62. Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: a review. Prev Nutr Food Sci. 2019;24:225–34. https://doi.org/10.3746/pnf.2019.24.3.225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Elbardisy B, Boraie N, Galal S. Tadalafil nanoemulsion mists for treatment of pediatric pulmonary hypertension via nebulization. Pharmaceutics. 2022;14:2717. https://doi.org/10.3390/pharmaceutics14122717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcia-Becerra C, Rojas A, Höcht C, Bernabeu E, Chiappetta D, Tevez S, Lucangioli S, Flor S, Tripodi V. Characterization and bioavailability of a novel coenzyme Q10 nanoemulsion used as an infant formula supplement. Int J Pharm. 2023;634: 122656. https://doi.org/10.1016/j.ijpharm.2023.122656.

    Article  CAS  PubMed  Google Scholar 

  65. J. Zhang, Z. Xie, N. Zhang, J. Zhong, Chapter 13 - Nanosuspension drug delivery system: preparation, characterization, postproduction processing, dosage form, and application, in: E. Andronescu, A.M. Grumezescu (Eds.), Nanostructures for drug delivery, Elsevier, 2017: pp. 413–443. https://doi.org/10.1016/B978-0-323-46143-6.00013-0.

  66. Perween N, Alshehri S, Easwari TS, Verma V, Faiyazuddin M, Alanazi A, Shakeel F. Investigating the feasibility of mefenamic acid nanosuspension for pediatric delivery: preparation, characterization, and role of excipients. Processes. 2021;9:574. https://doi.org/10.3390/pr9040574.

    Article  CAS  Google Scholar 

  67. Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng. 2022;16:18. https://doi.org/10.1186/s13036-022-00298-5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zenze M, Daniels A, Singh M. Dendrimers as modifiers of inorganic nanoparticles for therapeutic delivery in cancer. Pharmaceutics. 2023;15:398. https://doi.org/10.3390/pharmaceutics15020398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yellepeddi VK, Mohammadpour R, Kambhampati SP, Sayre C, Mishra MK, Kannan RM, Ghandehari H. Pediatric oral formulation of dendrimer-N-acetyl-l-cysteine conjugates for the treatment of neuroinflammation. Int J Pharm. 2018;545:113–6. https://doi.org/10.1016/j.ijpharm.2018.04.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. G.R. Williams, B.T. Raimi-Abraham, C.J. Luo, Nanofibres in drug delivery, UCL Press, 2018.

  71. Farhaj S, Conway BR, Ghori MU. Nanofibres in drug delivery applications. Fibers. 2023;11:21. https://doi.org/10.3390/fib11020021.

    Article  CAS  Google Scholar 

  72. Kajdič S, Planinšek O, Gašperlin M, Kocbek P. Electrospun nanofibers for customized drug-delivery systems. Journal of Drug Delivery Science and Technology. 2019;51:672–81. https://doi.org/10.1016/j.jddst.2019.03.038.

    Article  CAS  Google Scholar 

  73. Ghosal K, Augustine R, Zaszczynska A, Barman M, Jain A, Hasan A, Kalarikkal N, Sajkiewicz P, Thomas S. Novel drug delivery systems based on triaxial electrospinning based nanofibers. React Funct Polym. 2021;163: 104895. https://doi.org/10.1016/j.reactfunctpolym.2021.104895.

    Article  CAS  Google Scholar 

  74. Rustemkyzy C, Belton P, Qi S. Preparation and characterization of ultrarapidly dissolving orodispersible films for treating and preventing iodine deficiency in the pediatric population. J Agric Food Chem. 2015;63:9831–8. https://doi.org/10.1021/acs.jafc.5b03953.

    Article  CAS  PubMed  Google Scholar 

  75. Monterrubio C, Pascual-Pasto G, Cano F, Vila-Ubach M, Manzanares A, Schaiquevich P, Tornero JA, Sosnik A, Mora J, Carcaboso AM. SN-38-loaded nanofiber matrices for local control of pediatric solid tumors after subtotal resection surgery. Biomaterials. 2016;79:69–78. https://doi.org/10.1016/j.biomaterials.2015.11.055.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou J, Yang Y, Zhang C. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun. 2013;49:8605–7. https://doi.org/10.1039/C3CC42266F.

    Article  CAS  Google Scholar 

  77. Wang W, Lu Y-C, Huang H, Feng J-J, Chen J-R, Wang A-J. Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst. 2014;139:1692–6. https://doi.org/10.1039/C3AN02098C.

    Article  CAS  PubMed  Google Scholar 

  78. Li S, Amat D, Peng Z, Vanni S, Raskin S, Angulo GD, Othman AM, Graham RM, Leblanc RM. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale. 2016;8:16662–9. https://doi.org/10.1039/C6NR05055G.

    Article  CAS  PubMed  Google Scholar 

  79. Liyanage P, Zhou Y, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Vanni S, Graham RM, Leblanc RM. Pediatric glioblastoma target-specific efficient delivery of gemcitabine across the blood–brain barrier via carbon nitride dots. Nanoscale. 2020;12:7927–38. https://doi.org/10.1039/D0NR01647K.

    Article  CAS  PubMed  Google Scholar 

  80. Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine. 2020;1:10–9. https://doi.org/10.1016/j.smaim.2020.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12:1459–73. https://doi.org/10.1517/17425247.2015.1018175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10:1403. https://doi.org/10.3390/nano10071403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gil ES, Wu L, Xu L, Lowe TL. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood–brain barrier. Biomacromol. 2012;13:3533–41. https://doi.org/10.1021/bm3008633.

    Article  CAS  Google Scholar 

  84. Pham K, Li D, Guo S, Penzak S, Dong X. Development and in vivo evaluation of child-friendly lopinavir/ritonavir pediatric granules utilizing novel in situ self-assembly nanoparticles. J Control Release. 2016;226:88–97. https://doi.org/10.1016/j.jconrel.2016.02.001.

    Article  CAS  PubMed  Google Scholar 

  85. Islam MS, Reineke J, Kaushik R, Woyengo T, Baride A, Alqahtani MS, Perumal O. Bioadhesive food protein nanoparticles as pediatric oral drug delivery system. ACS Appl Mater Interfaces. 2019;11:18062–73. https://doi.org/10.1021/acsami.9b00152.

    Article  CAS  PubMed  Google Scholar 

  86. Liu G, Li D-C, Li P-P, Li R-R, Chen S-Y. Methotrexate nanoparticle delivery system for treatment of inflammatory bowel disease in pediatric patients. Trop J Pharm Res. 2016;15:1361–8. https://doi.org/10.4314/tjpr.v15i7.2.

    Article  CAS  Google Scholar 

  87. Zhang T, Ma J, Li C, Lin K, Lou F, Jiang H, Gao Y, Yang Y, Ming C, Ruan B. Core-shell lipid polymer nanoparticles for combined chemo and gene therapy of childhood head and neck cancers. Oncol Rep. 2017;37:1653–61. https://doi.org/10.3892/or.2017.5365.

    Article  CAS  PubMed  Google Scholar 

  88. Choi J, Rui Y, Kim J, Gorelick N, Wilson DR, Kozielski K, Mangraviti A, Sankey E, Brem H, Tyler B, Green JJ, Jackson EM. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies, Nanomedicine: Nanotechnology. Biology and Medicine. 2020;23: 102115. https://doi.org/10.1016/j.nano.2019.102115.

    Article  CAS  Google Scholar 

  89. S. Attias Cohen, P.S. Kingma, J.A. Whitsett, R. Goldbart, T. Traitel, J. Kost, SP-D loaded PLGA nanoparticles as drug delivery system for prevention and treatment of premature infant’s lung diseases, International Journal of Pharmaceutics 585 (2020) 119387. https://doi.org/10.1016/j.ijpharm.2020.119387.

  90. Diefenthaeler HS, Bianchin MD, Marques MS, Nonnenmacher JL, Bender ET, Bender JG, Nery SF, Cichota LC, Külkamp-Guerreiro IC. Omeprazole nanoparticles suspension: development of a stable liquid formulation with a view to pediatric administration. Int J Pharm. 2020;589: 119818. https://doi.org/10.1016/j.ijpharm.2020.119818.

    Article  CAS  PubMed  Google Scholar 

  91. Chen G, Jin D, Jiang X, Qiu Y. Preparation of dopamine nanoparticles and its application in the treatment of neonatal scleredema. Sci Adv Mater. 2021;13:1048–57. https://doi.org/10.1166/sam.2021.4029.

    Article  CAS  Google Scholar 

  92. N. Nieto González, G. Cerri, J. Molpeceres, M. Cossu, G. Rassu, P. Giunchedi, E. Gavini, Surfactant-free chitosan/cellulose acetate phthalate nanoparticles: an attempt to solve the needs of captopril administration in paediatrics, Pharmaceuticals 15 (2022) 662. https://doi.org/10.3390/ph15060662.

  93. Nerli G, Gonçalves LMD, Cirri M, Almeida AJ, Maestrelli F, Mennini N, Mura PA. Design, evaluation and comparison of nanostructured lipid carriers and chitosan nanoparticles as carriers of poorly soluble drugs to develop oral liquid formulations suitable for pediatric use. Pharmaceutics. 2023;15:1305. https://doi.org/10.3390/pharmaceutics15041305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat. 2020;30:179–94. https://doi.org/10.1080/13543776.2020.1720649.

    Article  CAS  PubMed  Google Scholar 

  95. M. Cirri, N. Mennini, F. Maestrelli, P. Mura, C. Ghelardini, L. Di Cesare Mannelli, Development and in vivo evaluation of an innovative “hydrochlorothiazide-in cyclodextrins-in solid lipid nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics, International Journal of Pharmaceutics 521 (2017) 73–83. https://doi.org/10.1016/j.ijpharm.2017.02.022.

  96. Sun D, Zhuang X, Zhang S, Deng Z-B, Grizzle W, Miller D, Zhang H-G. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013;65:342–7. https://doi.org/10.1016/j.addr.2012.07.002.

    Article  CAS  PubMed  Google Scholar 

  97. Haque S, Vaiselbuh SR. Silencing of exosomal miR-181a reverses pediatric acute lymphocytic leukemia cell proliferation. Pharmaceuticals. 2020;13:241. https://doi.org/10.3390/ph13090241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ajnai G, Chiu A, Kan T, Cheng C-C, Tsai T-H, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. Journal of Experimental & Clinical Medicine. 2014;6:172–8. https://doi.org/10.1016/j.jecm.2014.10.015.

    Article  CAS  Google Scholar 

  99. Siddique S, Chow JCL. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci. 2020;10:3824. https://doi.org/10.3390/app10113824.

    Article  CAS  Google Scholar 

  100. D. Lima, J. Inaba, L. Clarindo Lopes, G.N. Calaça, P. Los Weinert, R. Lenzi Fogaça, J. Ferreira de Moura, L. Magalhães Alvarenga, B. Cavalcante de Figueiredo, K. Wohnrath, C. Andrade Pessôa, Label-free impedimetric immunosensor based on arginine-functionalized gold nanoparticles for detection of DHEAS, a biomarker of pediatric adrenocortical carcinoma, Biosensors and Bioelectronics 133 (2019) 86–93. https://doi.org/10.1016/j.bios.2019.02.063.

  101. Hanafy NAN, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers. 2018;10:238. https://doi.org/10.3390/cancers10070238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bukchin A, Pascual-Pasto G, Cuadrado-Vilanova M, Castillo-Ecija H, Monterrubio C, Olaciregui NG, Vila-Ubach M, Ordeix L, Mora J, Carcaboso AM, Sosnik A. Glucosylated nanomicelles target glucose-avid pediatric patient-derived sarcomas. J Control Release. 2018;276:59–71. https://doi.org/10.1016/j.jconrel.2018.02.034.

    Article  CAS  PubMed  Google Scholar 

  103. Chauhan PS, Kumarasamy M, Carcaboso AM, Sosnik A, Danino D. Multifunctional silica-coated mixed polymeric micelles for integrin-targeted therapy of pediatric patient-derived glioblastoma. Mater Sci Eng, C. 2021;128: 112261. https://doi.org/10.1016/j.msec.2021.112261.

    Article  CAS  Google Scholar 

  104. Watanabe T, Mizuno HL, Norimatsu J, Obara T, Cabral H, Tsumoto K, Nakakido M, Kawauchi D, Anraku Y. Ligand installation to polymeric micelles for pediatric brain tumor targeting. Polymers. 2023;15:1808. https://doi.org/10.3390/polym15071808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613. https://doi.org/10.1016/j.biopha.2018.04.055.

    Article  CAS  PubMed  Google Scholar 

  106. Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics. 2020;12:288. https://doi.org/10.3390/pharmaceutics12030288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mura P, Maestrelli F, D’Ambrosio M, Luceri C, Cirri M. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations. Pharmaceutics. 2021;13:437. https://doi.org/10.3390/pharmaceutics13040437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. M. Cirri, F. Maestrelli, P. Mura, C. Ghelardini, L. Di Cesare Mannelli, Combined approach of cyclodextrin complexationand nanostructured lipid carriers for the development of a pediatric liquid oral dosage form of hydrochlorothiazide, Pharmaceutics 10 (2018) 287. https://doi.org/10.3390/pharmaceutics10040287.

  109. C. Pathak, F.U. Vaidya, S.M. Pandey, Chapter 3 - Mechanism for development of nanobased drug delivery system, in: S.S. Mohapatra, S. Ranjan, N. Dasgupta, R.K. Mishra, S. Thomas (Eds.), Applications of targeted nano drugs and delivery systems, Elsevier, 2019: pp. 35–67. https://doi.org/10.1016/B978-0-12-814029-1.00003-X.

  110. Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials. 2020;10:847. https://doi.org/10.3390/nano10050847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. I. Limayem Blouza, C. Charcosset, S. Sfar, H. Fessi, Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use, International Journal of Pharmaceutics 325 (2006) 124–131. https://doi.org/10.1016/j.ijpharm.2006.06.022.

  112. de Oliveira EG, Cardoso AM, Paese K, Coradini K, de Oliveira CV, Pohlmann AR, Oliveira MS, Guterres SS, Beck RCR. Reconstituted spray-dried phenytoin-loaded nanocapsules improve the in vivo phenytoin anticonvulsant effect and the survival time in mice. Int J Pharm. 2018;551:121–32. https://doi.org/10.1016/j.ijpharm.2018.09.023.

    Article  CAS  PubMed  Google Scholar 

  113. S. Wirsching, M. Machtakova, F. Borgans, L. Pretsch, M. Fichter, M.L. Cacicedo, H. Thérien-Aubin, K. Landfester, S. Gehring, OVA-PEG-R848 nanocapsules stimulate neonatal conventional and plasmacytoid dendritic cells, Frontiers in Pediatrics 10 (2022). https://www.frontiersin.org/articles/https://doi.org/10.3389/fped.2022.966113 (accessed July 31, 2023).

  114. Iravani S, Varma RS. Nanosponges for drug delivery and cancer therapy: recent advances. Nanomaterials. 2022;12:2440. https://doi.org/10.3390/nano12142440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rao MRP, Bhingole RC. Nanosponge-based pediatric-controlled release dry suspension of gabapentin for reconstitution. Drug Dev Ind Pharm. 2015;41:2029–36. https://doi.org/10.3109/03639045.2015.1044903.

    Article  CAS  PubMed  Google Scholar 

  116. Omar SM, Ibrahim F, Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharmaceutical Journal. 2020;28:349–61. https://doi.org/10.1016/j.jsps.2020.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev. 2016;45:6520–45. https://doi.org/10.1039/C6CS00409A.

    Article  CAS  PubMed  Google Scholar 

  118. M. Demirci, M.Y. Caglar, B. Cakir, İ. Gülseren, 3 - Encapsulation by nanoliposomes, in: S.M. Jafari (Ed.), Nanoencapsulation technologies for the food and nutraceutical industries, Academic Press, 2017: pp. 74–113. https://doi.org/10.1016/B978-0-12-809436-5.00003-3.

  119. K.M. Aguilar-Pérez, J.I. Avilés-Castrillo, D.I. Medina, R. Parra-Saldivar, H.M.N. Iqbal, Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings, Frontiers in Bioengineering and Biotechnology 8 (2020). https://www.frontiersin.org/articles/https://doi.org/10.3389/fbioe.2020.579536 (accessed August 7, 2023).

  120. Taléns-Visconti R, Díez-Sales O, de Julián-Ortiz JV, Nácher A. Nanoliposomes in cancer therapy: marketed products and current clinical trials. Int J Mol Sci. 2022;23:4249. https://doi.org/10.3390/ijms23084249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. L. Kager, U. Pötschger, S. Bielack, Review of mifamurtide in the treatment of patients with osteosarcoma, Ther Clin Risk Manag 6 (2010) 279–286. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893760/ (accessed July 22, 2023).

  122. U.A. Fahmy, H. Aldawsari, Combined ceftriaxone sodium with alpha lipoic acid nanoliposomes for more stable, and less nephrotoxic formula in pediatrics, 13 (2018) 245–252. https://www.chalcogen.ro/245_FahmiUA.pdf.

  123. Stewart E, Blankenship K, Freeman B, Federico S, Dyer M. Abstract 6716: Preclinical evaluation of nano-liposomal irinotecan in pediatric solid tumor patient-derived xenografts. Can Res. 2023;83:6716. https://doi.org/10.1158/1538-7445.AM2023-6716.

    Article  Google Scholar 

  124. Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: a review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology. 2020;56: 101581. https://doi.org/10.1016/j.jddst.2020.101581.

    Article  CAS  Google Scholar 

  125. Zidan AS, Hosny KM, Ahmed OAA, Fahmy UA. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Delivery. 2016;23:1536–49. https://doi.org/10.3109/10717544.2014.980896.

    Article  CAS  PubMed  Google Scholar 

  126. Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17:295–304. https://doi.org/10.1038/gt.2009.148.

    Article  CAS  PubMed  Google Scholar 

  127. Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials. 2017;147:155–68. https://doi.org/10.1016/j.biomaterials.2017.09.020.

    Article  CAS  PubMed  Google Scholar 

  128. Kanra G, Marchisio P, Feiterna-Sperling C, Gaedicke G, Lazar H, Durrer P, Kürsteiner O, Herzog C, Kara A, Principi N. Comparison of immunogenicity and tolerability of a virosome-adjuvanted and a split influenza vaccine in children. Pediatr Infect Dis J. 2004;23:300. https://doi.org/10.1097/00006454-200404000-00005.

    Article  PubMed  Google Scholar 

  129. Künzi V, Dornseiff M, Horwath J, Hartmann K. Safe vaccination of children with a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27:1261–5. https://doi.org/10.1016/j.vaccine.2008.12.008.

    Article  CAS  PubMed  Google Scholar 

  130. Van Herck K, Hens A, De Coster I, Vertruyen A, Tolboom J, Sarnecki M, Van Damme P. Long-term antibody persistence in children after vaccination with the pediatric formulation of an aluminum-free virosomal hepatitis A vaccine. Pediatr Infect Dis J. 2015;34: e85. https://doi.org/10.1097/INF.0000000000000616.

    Article  PubMed  Google Scholar 

  131. Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines. 2023;11:1114. https://doi.org/10.3390/biomedicines11041114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. World Health Organization, CureAll framework: WHO global initiative for childhood cancer: increasing access, advancing quality, saving lives, World Health Organization, 2021. https://apps.who.int/iris/handle/10665/347370 (accessed June 1, 2023).

  133. Aleassa EM, Xing M, Keijzer R. Nanomedicine as an innovative therapeutic strategy for pediatric cancer. Pediatr Surg Int. 2015;31:611–6. https://doi.org/10.1007/s00383-015-3683-2.

    Article  PubMed  Google Scholar 

  134. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. https://doi.org/10.1038/nri.2016.107.

    Article  CAS  PubMed  Google Scholar 

  135. Cabral H, Kinoh H, Kataoka K. Tumor-targeted nanomedicine for immunotherapy. Acc Chem Res. 2020;53:2765–76. https://doi.org/10.1021/acs.accounts.0c00518.

    Article  CAS  PubMed  Google Scholar 

  136. Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev. 2022;182: 114115. https://doi.org/10.1016/j.addr.2022.114115.

    Article  CAS  PubMed  Google Scholar 

  137. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9:1410. https://doi.org/10.1038/s41467-018-03705-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37. https://doi.org/10.1038/nrc.2016.108.

    Article  CAS  PubMed  Google Scholar 

  139. Abballe L, Spinello Z, Antonacci C, Coppola L, Miele E, Catanzaro G, Miele E. Nanoparticles for drug and gene delivery in pediatric brain tumors’ cancer stem cells: current knowledge and future perspectives. Pharmaceutics. 2023;15:505. https://doi.org/10.3390/pharmaceutics15020505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cerna T, Stiborova M, Adam V, Kizek R, Eckschlager T. Nanocarrier drugs in the treatment of brain tumors. J Cancer Metastasis Treat. 2016;2:407–16.

    Article  CAS  Google Scholar 

  141. Naki T, Aderibigbe BA. Efficacy of polymer-based nanomedicine for the treatment of brain cancer. Pharmaceutics. 2022;14:1048. https://doi.org/10.3390/pharmaceutics14051048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Udaka YT, Packer RJ. Pediatric brain tumors. Neurol Clin. 2018;36:533–56. https://doi.org/10.1016/j.ncl.2018.04.009.

    Article  PubMed  Google Scholar 

  143. S. Partap, M. Monje, Pediatric brain tumors, CONTINUUM: Lifelong Learning in Neurology 26 (2020) 1553. https://doi.org/10.1212/CON.0000000000000955.

  144. Segal D, Karajannis MA. Pediatric brain tumors: an update. Curr Probl Pediatr Adolesc Health Care. 2016;46:242–50. https://doi.org/10.1016/j.cppeds.2016.04.004.

    Article  PubMed  Google Scholar 

  145. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19:1584–96. https://doi.org/10.1038/nm.3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Guido C, Baldari C, Maiorano G, Mastronuzzi A, Carai A, Quintarelli C, De Angelis B, Cortese B, Gigli G, Palamà IE. Nanoparticles for diagnosis and target therapy in pediatric brain cancers. Diagnostics. 2022;12:173. https://doi.org/10.3390/diagnostics12010173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. M. Alavi, M. Hamidi, Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles, Drug Metabolism and Personalized Therapy 34 (2019). https://doi.org/10.1515/dmpt-2018-0032.

  148. Sharma HS, Muresanu DF, Nozari A, Lafuente JV, Tian ZR, S. Sahib, I. Bryukhovetskiy, A. Bryukhovetskiy, A.D. Buzoianu, R. Patnaik, L. Wiklund, A. Sharma, Chapter one - Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine, in: I. Bryukhovetskiy, A. Sharma, Z. Zhang, H.S. Sharma (Eds.), International review of neurobiology, Academic Press, 2020: pp. 1–66. https://doi.org/10.1016/bs.irn.2020.03.001.

  149. Power EA, Rechberger JS, Gupta S, Schwartz JD, Daniels DJ, Khatua S. Drug delivery across the blood-brain barrier for the treatment of pediatric brain tumors – an update. Adv Drug Deliv Rev. 2022;185: 114303. https://doi.org/10.1016/j.addr.2022.114303.

    Article  CAS  PubMed  Google Scholar 

  150. El-Shafie S, Fahmy SA, Ziko L, Elzahed N, Shoeib T, Kakarougkas A. Encapsulation of nedaplatin in novel PEGylated liposomes increases its cytotoxicity and genotoxicity against A549 and U2OS human cancer cells. Pharmaceutics. 2020;12:863. https://doi.org/10.3390/pharmaceutics12090863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fahmy SA, Dawoud A, Zeinelabdeen YA, Kiriacos CJ, Daniel KA, Eltahtawy O, Abdelhalim MM, Braoudaki M, Youness RA. Molecular engines, therapeutic targets, and challenges in pediatric brain tumors: a special emphasis on hydrogen sulfide and RNA-based nano-delivery. Cancers. 2022;14:5244. https://doi.org/10.3390/cancers14215244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kambhampati M, Yadavilli S, McNeeley KM, Pai SB, Yu Q, Bellamkonda R, Fernandes R, Packer RJ, Nazarian J. NI-44liposomal nanoparticles for targeting and imaging of pediatric brain tumors. Neuro Oncol. 2014;16:v147–8. https://doi.org/10.1093/neuonc/nou264.42.

    Article  PubMed Central  Google Scholar 

  153. Kievit FM, Stephen ZR, Wang K, Dayringer CJ, Sham JG, Ellenbogen RG, Silber JR, Zhang M. Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor cells to γ-irradiation. Mol Oncol. 2015;9:1071–80. https://doi.org/10.1016/j.molonc.2015.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu Z, Yan H, Li H. Silencing of DNA repair sensitizes pediatric brain tumor cells to γ-irradiation using gold nanoparticles. Environ Toxicol Pharmacol. 2017;53:40–5. https://doi.org/10.1016/j.etap.2017.04.017.

    Article  CAS  PubMed  Google Scholar 

  155. Bell JB, Rink JS, Eckerdt F, Clymer J, Goldman S, Thaxton CS, Platanias LC. HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Sci Rep. 2018;8:1211. https://doi.org/10.1038/s41598-017-18100-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Buczkowicz P, Hawkins C. Pathology, molecular genetics, and epigenetics of diffuse intrinsic pontine glioma, Frontiers in Oncology 2015;5. https://www.frontiersin.org/articles/10.3389/fonc.2015.00147 (accessed July 16, 2023).

  157. Ung C, Tsoli M, Liu J, Cassano D, Pocoví-Martínez S, Upton DH, Ehteda A, Mansfeld FM, Failes TW, Farfalla A, Katsinas C, Kavallaris M, Arndt GM, Vittorio O, Cirillo G, Voliani V, Ziegler DS. Doxorubicin-loaded gold nanoarchitectures as a therapeutic strategy against diffuse intrinsic pontine glioma. Cancers. 2021;13:1278. https://doi.org/10.3390/cancers13061278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cooney TM, Lubanszky E, Prasad R, Hawkins C, Mueller S. Diffuse midline glioma: review of epigenetics. J Neurooncol. 2020;150:27–34. https://doi.org/10.1007/s11060-020-03553-1.

    Article  CAS  PubMed  Google Scholar 

  159. Heravi Shargh V, Luckett J, Bouzinab K, Paisey S, Turyanska L, Singleton WG, Lowis S, Gershkovich P, Bradshaw TD, Stevens MF, Bienemann A. Coyle, Chemosensitization of temozolomide-resistant pediatric diffuse midline glioma using potent nanoencapsulated forms of a N(3)-propargyl analogue. ACS Appl Mater Interfaces. 2021;13:35266–35280. https://doi.org/10.1021/acsami.1c04164.

  160. Shields CL, Shields JA. Basic understanding of current classification and management of retinoblastoma. Curr Opin Ophthalmol. 2006;17:228. https://doi.org/10.1097/01.icu.0000193079.55240.18.

    Article  PubMed  Google Scholar 

  161. Dimaras H, Kimani K, Dimba EA, Gronsdahl P, White A, Chan HS, Gallie BL. Retinoblastoma. The Lancet. 2012;379:1436–46. https://doi.org/10.1016/S0140-6736(11)61137-9.

    Article  Google Scholar 

  162. Grossniklaus HE. Retinoblastoma. Fifty Years of Progress. The LXXI Edward Jackson Memorial Lecture. Am J Ophthalmol. 2014;158:875–891e1. https://doi.org/10.1016/j.ajo.2014.07.025.

  163. Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Hocine O, Maynadier M, Gallud A, Da Silva A, Mongin O, Blanchard-Desce M, Richeter S, Loock B, Maillard P, Morère A, Garcia M, Raehm L, Durand J-O. Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy. Int J Pharm. 2012;432:99–104. https://doi.org/10.1016/j.ijpharm.2012.04.056.

    Article  CAS  PubMed  Google Scholar 

  164. Mitra M, Kandalam M, Rangasamy J, Shankar B, Maheswari UK, Swaminathan S, Krishnakumar S. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol Vis. 2013;19:1029–1038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654846/ (accessed August 2, 2023).

  165. Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol. 2014;70:572–82. https://doi.org/10.1016/j.ijbiomac.2014.07.041.

    Article  CAS  PubMed  Google Scholar 

  166. Gallud A, Warther D, Maynadier M, Sefta M, Poyer F, Thomas CD, Rouxel C, Mongin O, Blanchard-Desce M, Morère A, Raehm L, Maillard P, Durand JO, Garcia M, Gary-Bobo M. Identification of MRC2 and CD209 receptors as targets for photodynamic therapy of retinoblastoma using mesoporous silica nanoparticles. RSC Adv. 2015;5:75167–72. https://doi.org/10.1039/C5RA14640B.

    Article  CAS  Google Scholar 

  167. Kalmodia S, Parameswaran S, Ganapathy K, Yang W, Barrow CJ, Kanwar JR, Roy K, Vasudevan M, Kulkarni K, Elchuri SV, Krishnakumar S. Characterization and molecular mechanism of peptide-conjugated gold nanoparticle inhibiting p53-HDM2 interaction in retinoblastoma. Molecular Therapy - Nucleic Acids. 2017;9:349–64. https://doi.org/10.1016/j.omtn.2017.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tabatabaei SN, Derbali RM, Yang C, Superstein R, Hamel P, Chain JL, Hardy P. Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. J Control Release. 2019;298:177–85. https://doi.org/10.1016/j.jconrel.2019.02.014.

    Article  CAS  PubMed  Google Scholar 

  169. N’Diaye M, Vergnaud-Gauduchon J, Nicolas V, Faure V, Denis S, Abreu S, Chaminade P, Rosilio V. Hybrid lipid polymer nanoparticles for combined chemo- and photodynamic therapy. Mol Pharmaceutics. 2019;16:4045–58. https://doi.org/10.1021/acs.molpharmaceut.9b00797.

    Article  CAS  Google Scholar 

  170. Sims LB, Tyo KM, Stocke S, Mahmoud MY, Ramasubramanian A, Steinbach-Rankins JM. Surface-modified melphalan nanoparticles for intravitreal chemotherapy of retinoblastoma. Invest Ophthalmol Vis Sci. 2019;60:1696–705. https://doi.org/10.1167/iovs.18-26251.

    Article  CAS  PubMed  Google Scholar 

  171. Li Z, Guo Z, Chu D, Feng H, Zhang J, Zhu L, Li J. Effectively suppressed angiogenesis-mediated retinoblastoma growth using celastrol nanomicelles. Drug Delivery. 2020;27:358–66. https://doi.org/10.1080/10717544.2020.1730522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Moradi S, Mokhtari-Dizaji M, Ghassemi F, Sheibani S, Amoli FA. The effect of ultrasound hyperthermia with gold nanoparticles on retinoblastoma Y79 cells. Gold Bull. 2020;53:111–20. https://doi.org/10.1007/s13404-020-00279-w.

    Article  CAS  Google Scholar 

  173. Godse R, Rathod M, De A, Shinde U. Intravitreal galactose conjugated polymeric nanoparticles of etoposide for retinoblastoma. Journal of Drug Delivery Science and Technology. 2021;61: 102259. https://doi.org/10.1016/j.jddst.2020.102259.

    Article  CAS  Google Scholar 

  174. Guo Z, Shi L, Feng H, Yang F, Li Z, Zhang J, Jin L, Li J. Reduction-sensitive nanomicelles: delivery celastrol for retinoblastoma cells effective apoptosis. Chin Chem Lett. 2021;32:1046–50. https://doi.org/10.1016/j.cclet.2020.03.066.

    Article  CAS  Google Scholar 

  175. Delrish E, Jabbarvand M, Ghassemi F, Amoli FA, Atyabi F, Lashay A, Soleimani M, Aghajanpour L, Dinarvand R. Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma. Exp Eye Res. 2021;204: 108423. https://doi.org/10.1016/j.exer.2020.108423.

    Article  CAS  PubMed  Google Scholar 

  176. Narayana RVL, Jana P, Tomar N, Prabhu V, Nair RM, Manukonda R, Kaliki S, Coupland SE, Alexander J, Kalirai H, Kondapi AK, Vemuganti GK. Carboplatin- and etoposide-loaded lactoferrin protein nanoparticles for targeting cancer stem cells in retinoblastoma in vitro. Invest Ophthalmol Vis Sci. 2021;62:13. https://doi.org/10.1167/iovs.62.14.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mudigunda SV, Pemmaraju DB, Paradkar S, Puppala ER, Gawali B, Upadhyayula SM, Vegi Gangamodi N, Rengan AK. Multifunctional polymeric nanoparticles for chemo/phototheranostics of retinoblastoma. ACS Biomater Sci Eng 2022;8:151–160. https://doi.org/10.1021/acsbiomaterials.1c01234.

  178. Kartha B, Thanikachalam K, Vijayakumar N, Alharbi NS, Kadaikunnan S, Khaled JM, Gopinath K, Govindarajan M. Synthesis and characterization of Ce-doped TiO2 nanoparticles and their enhanced anticancer activity in Y79 retinoblastoma cancer cells. Green Processing and Synthesis. 2022;11:143–9. https://doi.org/10.1515/gps-2022-0011.

    Article  CAS  Google Scholar 

  179. Krishnan V, Xu X, Barwe SP, Yang X, Czymmek K, Waldman SA, Mason RW, Jia X, Rajasekaran AK. Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: a novel application in pediatric nanomedicine. Mol Pharmaceutics. 2013;10:2199–210. https://doi.org/10.1021/mp300350e.

    Article  CAS  Google Scholar 

  180. Wiesmann N, Tremel W, Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mater Chem B. 2020;8:4973–89. https://doi.org/10.1039/D0TB00739K.

    Article  CAS  PubMed  Google Scholar 

  181. Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers. 2021;13:4570. https://doi.org/10.3390/cancers13184570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S, Mayoh C, Kavallaris M, Lock RB. Development of siRNA-loaded lipid nanoparticles targeting long non-coding RNA LINC01257 as a novel and safe therapeutic approach for t(8;21) pediatric acute myeloid leukemia. Pharmaceutics. 2021;13:1681. https://doi.org/10.3390/pharmaceutics13101681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Taran SJ, Taran R, Malipatil NB. Pediatric osteosarcoma: an updated review, Indian J Med Paediatr. Oncol. 2017;38:33–43. https://doi.org/10.4103/0971-5851.203513.

    Article  Google Scholar 

  184. Wagner LM, Yin H, Eaves D, Currier M, Cripe TP. Preclinical evaluation of nanoparticle albumin-bound paclitaxel for treatment of pediatric bone sarcoma. Pediatr Blood Cancer. 2014;61:2096–8. https://doi.org/10.1002/pbc.25062.

    Article  CAS  PubMed  Google Scholar 

  185. Ni M, Xiong M, Zhang X, Cai G, Chen H, Zeng Q, Yu Z. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. Int J Nanomed. 2015;10:2537–54. https://doi.org/10.2147/IJN.S78498.

    Article  CAS  Google Scholar 

  186. Haghiralsadat F, Amoabediny G, Sheikhha MH, Forouzanfar T, Helder MN, Zandieh-Doulabi B. A novel approach on drug delivery: investigation of a new nano-formulation of liposomal doxorubicin and biological evaluation of entrapped doxorubicin on various osteosarcoma cell lines. Cell J. 2017;19:55–65. https://doi.org/10.22074/cellj.2017.4502.

  187. González-Fernández Y, Brown HK, Patiño-García A, Heymann D, Blanco-Prieto MJ. Oral administration of edelfosine encapsulated lipid nanoparticles causes regression of lung metastases in pre-clinical models of osteosarcoma. Cancer Lett. 2018;430:193–200. https://doi.org/10.1016/j.canlet.2018.05.030.

    Article  CAS  PubMed  Google Scholar 

  188. Zhang J, Miao Y, Ni W, Xiao H, Zhang J. Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma. Artificial Cells, Nanomedicine, and Biotechnology. 2019;47:2298–305. https://doi.org/10.1080/21691401.2019.1622554.

    Article  CAS  PubMed  Google Scholar 

  189. Rodríguez-Nogales C, Moreno H, Zandueta C, Desmaële D, Lecanda F, Couvreur P, Blanco-Prieto MJ. Combinatorial nanomedicine made of squalenoyl-gemcitabine and edelfosine for the treatment of osteosarcoma. Cancers. 2020;12:1895. https://doi.org/10.3390/cancers12071895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xu Y, Qi J, Sun W, Zhong W, Wu H. Therapeutic effects of zoledronic acid-loaded hyaluronic acid/polyethylene glycol/nano-hydroxyapatite nanoparticles on osteosarcoma. Front bioeng biotechnol. 2022;10. https://www.frontiersin.org/articles/10.3389/fbioe.2022.897641 (accessed January 12, 2024).

  191. Katta SS, Nagati V, Paturi ASV, Murakonda SP, Murakonda AB, Pandey MK, Gupta SC, Pasupulati AK, Challagundla KB. Neuroblastoma: emerging trends in pathogenesis, diagnosis, and therapeutic targets. J Control Release. 2023;357:444–59. https://doi.org/10.1016/j.jconrel.2023.04.001.

    Article  CAS  PubMed  Google Scholar 

  192. Sagnella SM, Trieu J, Brahmbhatt H, MacDiarmid JA, MacMillan A, Whan RM, Fife CM, McCarroll JA, Gifford AJ, Ziegler DS, Kavallaris M. Targeted doxorubicin-loaded bacterially derived nano-cells for the treatment of neuroblastoma. Mol Cancer Ther. 2018;17:1012–23. https://doi.org/10.1158/1535-7163.MCT-17-0738.

    Article  CAS  PubMed  Google Scholar 

  193. WHO, World health statistics 2023: monitoring health for the SDGs, sustainable development goals, World Health Organization (2023). https://www.who.int/publications-detail-redirect/9789240074323 (accessed July 28, 2023).

  194. Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances, Front Chem. 2020;8. https://www.frontiersin.org/articles/10.3389/fchem.2020.00286 (accessed July 28, 2023).

  195. Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. 2021;16:369–84. https://doi.org/10.1038/s41565-021-00866-8.

    Article  CAS  PubMed  Google Scholar 

  196. Sun Y, Chen D, Pan Y, Qu W, Hao H, Wang X, Liu Z, Xie S. Nanoparticles for antiparasitic drug delivery. Drug Delivery. 2019;26:1206–21. https://doi.org/10.1080/10717544.2019.1692968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bajwa HU, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, Aleem MT, Abbas A, Almutairi MM, Alshammari FA, Alraey Y. Nanoparticles: synthesis and their role as potential drug candidates for the treatment of parasitic diseases. Life. 2022;12:750. https://doi.org/10.3390/life12050750.

  198. Pediatric malaria: background, etiology. epidemiology. 2022. https://emedicine.medscape.com/article/998942-overview?form=fpf (accessed January 11, 2024).

  199. Dandagi PM, Rath SP, Gadad AP, Mastiholimath VS. Taste masked quinine sulphate loaded solid lipid nanoparticles for flexible pediatric dosing. Indian Journal of Pharmaceutical Education and Research. 2014;48:93–9.

    Article  Google Scholar 

  200. Tang W-L, Tang W-H, Chen WC, Diako C, Ross CF, Li S-D. Development of a rapidly dissolvable oral pediatric formulation for mefloquine using liposomes. Mol Pharmaceutics. 2017;14:1969–79. https://doi.org/10.1021/acs.molpharmaceut.7b00077.

    Article  CAS  Google Scholar 

  201. Münster M, Mohamed-Ahmed AHA, Immohr LI, Schoch C, Schmidt C, Tuleu C, Breitkreutz J. Comparative in vitro and in vivo taste assessment of liquid praziquantel formulations. Int J Pharm. 2017;529:310–8. https://doi.org/10.1016/j.ijpharm.2017.06.084.

    Article  CAS  PubMed  Google Scholar 

  202. Kokaliaris C, Garba A, Matuska M, Bronzan RN, Colley DG, Dorkenoo AM, Ekpo UF, Fleming FM, French MD, Kabore A, Mbonigaba JB, Midzi N, Mwinzi PNM, N’Goran EK, Polo MR, Sacko M, Tchuenté L-AT, Tukahebwa EM, Uvon PA, Yang G, Wiesner L, Zhang Y, Utzinger J, Vounatsou P. Effect of preventive chemotherapy with praziquantel on schistosomiasis among school-aged children in sub-Saharan Africa: a spatiotemporal modelling study. Lancet Infect Dis. 2022;22:136–49. https://doi.org/10.1016/S1473-3099(21)00090-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gonzalez MA, Ramírez Rigo MV, González Vidal NL. Orphan formulations in pediatric schistosomiasis treatment: development and characterization of praziquantel nanoparticle—loaded powders for reconstitution. AAPS Pharm Sci Tech. 2019;20:318. https://doi.org/10.1208/s12249-019-1548-z.

  204. Traynor K. Benznidazole approved for Chagas disease in children. Am J Health Syst Pharm. 2017;74:1519. https://doi.org/10.2146/news170065.

    Article  PubMed  Google Scholar 

  205. Lidani KC, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, Sandri TL. Chagas disease: from discovery to a worldwide health problem. Front Public Health. 2019;7. https://www.frontiersin.org/articles/10.3389/fpubh.2019.00166 (accessed July 23, 2023).

  206. Seremeta KP, Arrúa EC, Okulik NB, Salomon CJ. Development and characterization of benznidazole nano- and microparticles: a new tool for pediatric treatment of Chagas disease? Colloids Surf, B. 2019;177:169–77. https://doi.org/10.1016/j.colsurfb.2019.01.039.

    Article  CAS  Google Scholar 

  207. Good R, Scherbak D. Fascioliasis in: StatPearls StatPearls. Publishing Treasure Island (FL). 2023. http://www.ncbi.nlm.nih.gov/books/NBK537032/ (accessed July 23, 2023).

  208. Daware S, Patki M, Saraswat A, Palekar S, Patel K. Development of a safe pediatric liquisolid self-nanoemulsifying system of triclabendazole for the treatment of fascioliasis. Int J Pharm. 2022;626: 122163. https://doi.org/10.1016/j.ijpharm.2022.122163.

    Article  CAS  PubMed  Google Scholar 

  209. Uribe-Restrepo A, Cossio A, Desai MM, Dávalos D,  del Castro MM. Interventions to treat cutaneous leishmaniasis in children: a systematic review. PLoS Negl Trop Dis. 2018;12: e0006986. https://doi.org/10.1371/journal.pntd.0006986.

  210. Erat T, An I. Treatment of pediatric cutaneous leishmaniasis with liposomal amphotericin B. Dermatol Ther. 2022;35: e15706. https://doi.org/10.1111/dth.15706.

    Article  CAS  PubMed  Google Scholar 

  211. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–11. https://doi.org/10.1016/S0140-6736(19)32989-7.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Lin T, Qin T, Jiang S, Zhang C, Wang L. Anti-inflammatory and anti-biotic drug metronidazole loaded ZIF-90 nanoparticles as a pH responsive drug delivery system for improved pediatric sepsis management. Microb Pathog. 2023;176: 105941. https://doi.org/10.1016/j.micpath.2022.105941.

    Article  CAS  PubMed  Google Scholar 

  213. Alter SJ, Bennett JS, Koranyi K, Kreppel A, Simon R. Common childhood viral infections. Curr Probl Pediatr Adolesc Health Care. 2015;45:21–53. https://doi.org/10.1016/j.cppeds.2014.12.001.

    Article  PubMed  Google Scholar 

  214. Auriti C, De Rose DU, Santisi A, Martini L, Piersigilli F, Bersani I, Ronchetti MP, Caforio L. Pregnancy and viral infections: mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim Biophys Acta Mol Basis Dis. 2021;1867: 166198. https://doi.org/10.1016/j.bbadis.2021.166198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215.  Justiz Vaillant AA, Gulick PG. HIV disease current practice in: StatPearls, StatPearls Publishing. Treasure Island (FL). 2023. http://www.ncbi.nlm.nih.gov/books/NBK534860/ (accessed July 27, 2023).

  216. WHO. HIV data and statistics. WHO 2023. https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics (accessed July 27, 2023).

  217. Chiappetta DA, Hocht C, Taira C, Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomedicine. 2010;5:11–23. https://doi.org/10.2217/nnm.09.90.

    Article  CAS  PubMed  Google Scholar 

  218. Zidan AS, Rahman Z, Khan MA. Product and process understanding of a novel pediatric anti-HIV tenofovir niosomes with a high-pressure homogenizer. Eur J Pharm Sci. 2011;44:93–102. https://doi.org/10.1016/j.ejps.2011.06.012.

    Article  CAS  PubMed  Google Scholar 

  219. Moretton MA, Taira C, Flor S, Bernabeu E, Lucangioli S, Höcht C, Chiappetta DA. Novel nelfinavir mesylate loaded d-α-tocopheryl polyethylene glycol 1000 succinate micelles for enhanced pediatric anti HIV therapy: in vitro characterization and in vivo evaluation. Colloids Surf, B. 2014;123:302–10. https://doi.org/10.1016/j.colsurfb.2014.09.031.

    Article  CAS  Google Scholar 

  220. Dharshini KP, Devi RD, Banudevi S, Narayanan VHB. In-vivo pharmacokinetic studies of dolutegravir loaded spray dried chitosan nanoparticles as milk admixture for paediatrics infected with HIV. Sci Rep. 2022;12:13907. https://doi.org/10.1038/s41598-022-18009-x.

    Article  CAS  Google Scholar 

  221. Guedes MDV, Marques MS, Berlitz SJ, Facure MHM, Correa DS, Steffens C, Contri RV, Külkamp-Guerreiro IC. Lamivudine and zidovudine-loaded nanostructures: green chemistry preparation for pediatric oral administration. Nanomaterials. 2023;13:770. https://doi.org/10.3390/nano13040770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lizzo JM, Cortes S. Pediatric asthma in: StatPearls StatPearls Publishing Treasure Island (FL). 2023. http://www.ncbi.nlm.nih.gov/books/NBK551631/ (accessed July 24, 2023).

  223. Chen Y-D, Liang Z-Y, Cen Y-Y, Zhang H, Han M-G, Tian Y-Q, Zhang J, Li S-J, Yang D-S. Development of oral dispersible tablets containing prednisolone nanoparticles for the management of pediatric asthma. Drug Des Devel Ther. 2015;9:5815–25. https://doi.org/10.2147/DDDT.S86075.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Li H, Yao Y, Fu H. Novel pediatric suspension of nanoparticulate zafirlukast for the treatment of asthma: assessment and evaluation in animal model. Micro & Nano Letters. 2021;16:485–91. https://doi.org/10.1049/mna2.12078.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported through Research Establishment Grants awarded by the Faculty of Health and College of Pharmacy, Dalhousie University (Grant ID: R34000).

Author information

Authors and Affiliations

Authors

Contributions

Saba Abedin: writing — original draft; writing — review and editing; investigation; methodology; visualization. Oluwatoyin A. Adeleke: conceptualization; methodology; visualization; writing — original draft; writing — review and editing; funding acquisition; project administration; supervision.

Corresponding author

Correspondence to Oluwatoyin A. Adeleke.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. The authors approved the submitted version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedin, S., Adeleke, O.A. State of the art in pediatric nanomedicines. Drug Deliv. and Transl. Res. 14, 2299–2324 (2024). https://doi.org/10.1007/s13346-024-01532-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-024-01532-x

Keywords

Navigation