Skip to main content

Advertisement

Log in

LINC00460 promotes neuroblastoma tumorigenesis and cisplatin resistance by targeting miR-149-5p/DLL1 axis and activating Notch pathway in vitro and in vivo

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) have been demonstrated to participate in neuroblastoma cisplatin resistance and tumorigenesis. LncRNA LINC00460 was previously reported to play a critical regulatory role in many cancer development. Nevertheless, its role in modulating neuroblastoma cisplatin resistance has not been explored till now. Cisplatin-resistant neuroblastoma cell lines were established by exposing neuroblastoma cell lines to progressively increasing concentrations of cisplatin for 6 months. LINC00460, microRNA (miR)-149-5p, and delta-like ligand 1 (DLL1) mRNA expression was measured through RT-qPCR. The protein levels of DLL1, epithelial-to-mesenchymal transition (EMT) markers, and the Notch signaling-related molecules were measured via western blotting. The IC50 value for cisplatin, cell growth, metastasis and apoptosis were analyzed in cisplatin-resistant neuroblastoma cells. The binding between LINC00460 (or DLL1) and miR-149-5p was validated through dual-luciferase reporter assay. The murine xenograft model was established to perform in vivo assays. LINC00460 and DLL1 levels were elevated, while miR-149-5p level was reduced in cisplatin-resistant neuroblastoma cells. LINC00460 depletion attenuated IC50 values for cisplatin, weakened cell growth, metastasis, and EMT, and enhanced apoptosis in cisplatin-resistant neuroblastoma cells. Mechanically, LINC00460 sponged miR-338-3p to increase DLL1 level, thereby activating Notch signaling pathway. DLL1 overexpression antagonized LINC00460 silencing-induced suppression on neuroblastoma cell cisplatin resistance and malignant behaviors, while such effects were further reversed by treatment with DAPT, the inhibitor of Notch pathway. Additionally, LINC00460 knockdown further augmented cisplatin-induced impairment on tumor growth in vivo. LINC00460 contributes to neuroblastoma cisplatin resistance and tumorigenesis through miR-149-5p/DLL1/Notch pathway, providing new directions to improve the therapeutic efficacy of chemotherapy drugs applied in patients with neuroblastoma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kushner BH, Cheung NK. Neuroblastoma–from genetic profiles to clinical challenge. N Engl J Med. 2005;353(21):2215–7.

    Article  CAS  PubMed  Google Scholar 

  2. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. 2013;3(10): a014415.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Castel V, Segura V, Berlanga P. Emerging drugs for neuroblastoma. Expert Opin Emerg Drugs. 2013;18(2):155–71.

    Article  CAS  PubMed  Google Scholar 

  4. Seeger RC, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313(18):1111–6.

    Article  CAS  PubMed  Google Scholar 

  5. Jin Z, et al. Development of differentiation modulators and targeted agents for treating neuroblastoma. Eur J Med Chem. 2020;207: 112818.

    Article  CAS  PubMed  Google Scholar 

  6. Chava S, et al. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol. 2020;14(1):180–96.

    Article  CAS  PubMed  Google Scholar 

  7. Aravindan N, Herman T, Aravindan S. Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets. 2020;24(9):899–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herd F, et al. A systematic review of re-induction chemotherapy for children with relapsed high-risk neuroblastoma. Eur J Cancer. 2019;111:50–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bagatell R, Cohn SL. Genetic discoveries and treatment advances in neuroblastoma. Curr Opin Pediatr. 2016;28(1):19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whittle SB, et al. Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther. 2017;17(4):369–86.

    Article  CAS  PubMed  Google Scholar 

  11. Yang C, et al. YAP promotes tumorigenesis and cisplatin resistance in neuroblastoma. Oncotarget. 2017;8(23):37154–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vella S, et al. Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA. Sci Rep. 2015;5:18144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen DW, et al. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev. 2012;64(3):706–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang Y, Fullwood MJ. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genom Proteom Bioinform. 2016;14(1):42–54.

    Article  CAS  Google Scholar 

  16. Boon RA, et al. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J Am Coll Cardiol. 2016;67(10):1214–26.

    Article  CAS  PubMed  Google Scholar 

  17. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152(6):1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang SY, Wang X, Zhang CY. LncRNA SNHG7 enhances chemoresistance in neuroblastoma through cisplatin-induced autophagy by regulating miR-329-3p/MYO10 axis. Eur Rev Med Pharmacol Sci. 2020;24(7):3805–17.

    PubMed  Google Scholar 

  19. Zhu K, et al. LncRNA HCP5 promotes neuroblastoma proliferation by regulating miR-186-5p/MAP3K2 signal axis. J Pediatr Surg. 2021;56(4):778–87.

    Article  PubMed  Google Scholar 

  20. Song H, et al. HNF4A-AS1/hnRNPU/CTCF axis as a therapeutic target for aerobic glycolysis and neuroblastoma progression. J Hematol Oncol. 2020;13(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen X, et al. LncRNA LINC00460: Function and mechanism in human cancer. Thorac Cancer. 2022;13(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  22. Saliminejad K, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–65.

    Article  CAS  PubMed  Google Scholar 

  23. Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51(4):759–74.

    Article  CAS  PubMed  Google Scholar 

  24. Qu H, et al. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 2015;24(9):2539–51.

    Article  CAS  PubMed  Google Scholar 

  25. He XY, et al. microRNA-221 Enhances MYCN via Targeting Nemo-like Kinase and Functions as an Oncogene Related to Poor Prognosis in Neuroblastoma. Clin Cancer Res. 2017;23(11):2905–18.

    Article  CAS  PubMed  Google Scholar 

  26. Shen Y, et al. Tumor-Suppressive and Oncogenic Roles of microRNA-149–5p in Human Cancers. Int J Mol Sci. 2022;23(18).

  27. Mao F, et al. miR-149 inhibits cell proliferation and enhances chemosensitivity by targeting CDC42 and BCL2 in neuroblastoma. Cancer Cell Int. 2019;19:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim H, et al. Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells. Cytotherapy. 2015;17(5):579–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou B, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7(1):95.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xiu MX, Liu YM, Kuang BH. The Role of DLLs in Cancer: A Novel Therapeutic Target. Onco Targets Ther. 2020;13:3881–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bettinsoli P, et al. Notch ligand Delta-like 1 as a novel molecular target in childhood neuroblastoma. BMC Cancer. 2017;17(1):352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu Z, et al. SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells. Cancer Cell Int. 2020;20:236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsubota S, Kadomatsu K. Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res. 2018;372(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  34. Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53(2):148–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li G, Kong Q. LncRNA LINC00460 promotes the papillary thyroid cancer progression by regulating the LINC00460/miR-485-5p/Raf1 axis. Biol Res. 2019;52(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang J, et al. Upregulation of lncRNA LINC00460 Facilitates GC Progression through Epigenetically Silencing CCNG2 by EZH2/LSD1 and Indicates Poor Outcomes. Mol Ther Nucleic Acids. 2020;19:1164–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu X, et al. Long noncoding RNA LINC00460 aggravates invasion and metastasis by targeting miR-30a-3p/Rap1A in nasopharyngeal carcinoma. Hum Cell. 2019;32(4):465–76.

    Article  CAS  PubMed  Google Scholar 

  38. Ma G, et al. Long Noncoding RNA LINC00460 Promotes the Gefitinib Resistance of Nonsmall Cell Lung Cancer Through Epidermal Growth Factor Receptor by Sponging miR-769-5p. DNA Cell Biol. 2019;38(2):176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu XX, et al. Pancreatic ductal adenocarcinoma cells regulated the gemcitabine-resistance function of CAFs by LINC00460. Cancer Sci. 2022;113(11):3735–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen J, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019;18(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu M, et al. miR-149-5p promotes chemotherapeutic resistance in ovarian cancer via the inactivation of the Hippo signaling pathway. Int J Oncol. 2018;52(3):815–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang C, et al. The lncRNA OGFRP1/miR-149-5p/IL-6 axis regulates prostate cancer chemoresistance. Pathol Res Pract. 2021;224: 153535.

    Article  CAS  PubMed  Google Scholar 

  44. Zhan Y, et al. Knockdown of Long Non-Coding RNA HOTAIR Suppresses Cisplatin Resistance, Cell Proliferation, Migration and Invasion of DDP-Resistant NSCLC Cells by Targeting miR-149-5p/Doublecortin-Like Kinase 1 Axis. Cancer Manag Res. 2020;12:7725–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu Y, et al. MicroRNA-149 is associated with clinical outcome in human neuroblastoma and modulates cancer cell proliferation through Rap1 independent of MYCN amplification. Biochimie. 2017;139:1–8.

    Article  CAS  PubMed  Google Scholar 

  46. Meng X, et al. LINC00460-miR-149-5p/miR-150-5p-Mutant p53 Feedback Loop Promotes Oxaliplatin Resistance in Colorectal Cancer. Mol Ther Nucleic Acids. 2020;22:1004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Påhlman S, et al. Notch signaling in neuroblastoma. Semin Cancer Biol. 2004;14(5):365–73.

    Article  PubMed  Google Scholar 

  48. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770–6.

    Article  CAS  PubMed  Google Scholar 

  49. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet. 2012;13(9):654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood. 2006;107(6):2223–33.

    Article  CAS  PubMed  Google Scholar 

  51. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3(10):756–67.

    Article  CAS  PubMed  Google Scholar 

  52. Espinoza I, Miele L. Notch inhibitors for cancer treatment. Pharmacol Ther. 2013;139(2):95–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferrari-Toninelli G, et al. Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells. Neuro Oncol. 2010;12(12):1231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang XX, et al. The MYCN enigma: significance of MYCN expression in neuroblastoma. Cancer Res. 2006;66(5):2826–33.

    Article  CAS  PubMed  Google Scholar 

  55. Nandi A, et al. Dll1-Mediated Notch Signaling Drives Tumor Cell Cross-talk with Cancer-Associated Fibroblasts to Promote Radioresistance in Breast Cancer. Cancer Res. 2022;82(20):3718–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen L, et al. Activation of NOTCH signaling via DLL1 is mediated by APE1-redox-dependent NF-κB activation in oesophageal adenocarcinoma. Gut. 2023;72(3):421–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by The Joint Fund Project of Science and Technology Innovation in Fujian Province (2021Y9118).

Author information

Authors and Affiliations

Authors

Contributions

Yali Xu and Zhixin Qiu conceived and designed the experiments. Yali Xu, Zhixin Qiu, Jinwen Chen, Lihong Huang, Jiaqi Zhang and Junshan Lin carried out the experiments. Yali Xu, Zhixin Qiu and Junshan Lin analyzed the data. Yali Xu, Zhixin Qiu and Junshan Lin drafted the manuscript. All authors agreed to be accountable for all aspects of the work. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Junshan Lin.

Ethics declarations

Ethics approval and consent to participate

Human tissue study was approved by the Ethics Committee of The First Affiliated Hospital of Fujian Medical University (Approval number: MRCTA,ECFAH of FMU[2022]318). The Institutional Animal Care and Use Committee of Hubei Provincial Center for Disease Control and Prevention authorized the animal experiments (Approval number: 202310037).

Informed consent

All participators signed the written informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Qiu, Z., Chen, J. et al. LINC00460 promotes neuroblastoma tumorigenesis and cisplatin resistance by targeting miR-149-5p/DLL1 axis and activating Notch pathway in vitro and in vivo. Drug Deliv. and Transl. Res. 14, 2003–2018 (2024). https://doi.org/10.1007/s13346-023-01505-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01505-6

Keywords

Navigation