Skip to main content

Advertisement

Log in

Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

At present, ulcerative colitis (UC) has become a global disease due to its high incidence. Hyperoside (HYP) is a naturally occurring flavonoid compound with many pharmacological effects. This study aimed to develop HYP-loaded mixed micelles (HYP-M) to improve oral bioavailability of HYP and to evaluate its therapeutic effect on UC. The prepared HYP-M exhibited stable physical and chemical properties, smaller particle size (PS) (21.48 ± 1.37 nm), good polydispersity index (PDI = 0.178 ± 0.013), negative Zeta potential (ZP) (− 20.00 ± 0.48 mV) and high entrapment rate (EE) (89.59 ± 2.03%). In vitro release and in vivo pharmacokinetic results showed that HYP-M significantly increased the releasing rate of HYP, wherein its oral bioavailability was 4.15 times higher than that of free HYP. In addition, HYP-M was more effective in the treatment of UC than free HYP. In conclusion, HYP-M could serve as a novel approach to improve bioavailability and increase anti-UC activity of HYP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data and materials generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JC, Chan FK, Sung JJ, Kaplan GG. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–2778. Available from https://www.sciencedirect.com/science/article/pii/S0140673617324480. https://doi.org/10.1016/S0140-6736(17)32448-0.

  2. Kaenkumchorn T, Wahbeh G. Ulcerative colitis: making the diagnosis. Gastroenterol Clin North Am. 2020;49(4):655–669. Available from https://www.sciencedirect.com/science/article/pii/S0889855320300698https://doi.org/10.1016/j.gtc.2020.07.001.

  3. Ibaraki H, Hatakeyama N, Arima N, Takeda A, Seta Y, Kanazawa T. Systemic delivery of sirna to the colon using peptide modified peg-pcl polymer micelles for the treatment of ulcerative colitis. Eur J Pharm Biopharm. 2022;170:170–178. Available from https://www.sciencedirect.com/science/article/pii/S0939641121003581https://doi.org/10.1016/j.ejpb.2021.12.009.

  4. Ibaraki H, Hatakeyama N, Arima N, Takeda A, Seta Y, Kanazawa T. Systemic delivery of sirna to the colon using peptide modified peg-pcl polymer micelles for the treatment of ulcerative colitis. Eur J Pharm Biopharm. 2022;170:170–178. https://doi.org/10.1016/j.ejpb.2021.12.009.

  5. Zhang C, Wang X, Xiao M, Ma J, Qu Y, Zou L, Zhang J. Nano-in-micro alginate/chitosan hydrogel via electrospray technology for orally curcumin delivery to effectively alleviate ulcerative colitis. Mater Des. 2022;221:110894. https://doi.org/10.1016/j.matdes.2022.110894.

  6. Miyake Y, Tanaka K, Nagata C, Furukawa S, Andoh A, Yokoyama T, Yoshimura N, Mori K, Ninomiya T, Yamamoto Y, Takeshita E, et al. Dietary intake of vegetables, fruit, and antioxidants and risk of ulcerative colitis: a case-control study in japan. Nutrition. 2021;91–92:111378. Available from https://www.sciencedirect.com/science/article/pii/S0899900721002409https://doi.org/10.1016/j.nut.2021.111378.

  7. Liu F, Zhang XS, Ji Y. Total flavonoid extract from hawthorn (Crataegus pinnatifida) improves inflammatory cytokines-evoked epithelial barrier deficit. Med Sci Monitor. 2020;26. Available from <Go to ISI>://WOS:000514207900001. https://doi.org/10.12659/msm.920170.

  8. Liu J, Wang Q, Omari-Siaw E, Adu-Frimpong M, Liu J, Xu X, Yu J. Enhanced oral bioavailability of bisdemethoxycurcumin-loaded self-microemulsifying drug delivery system: formulation design, in vitro and in vivo evaluation. Int J Pharm. 2020;590:119887. https://doi.org/10.1016/j.ijpharm.2020.119887.

    Article  CAS  PubMed  Google Scholar 

  9. Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: a review of its structure, synthesis, pharmacology, pharmacokinetics and toxicity. Molecules. 2022;27(9). Available from <Go to ISI>://WOS:000794662700001. https://doi.org/10.3390/molecules27093009.

  10. Xu Y, Liang N, Liu J, Gong X, Yan P, Sun S. Design and fabrication of chitosan-based aie active micelles for bioimaging and intelligent delivery of paclitaxel. Carbohydr Polym. 2022;290:119509. https://doi.org/10.1016/j.carbpol.2022.119509.

  11. Vlaisavljević S, Šibul F, Sinka I, Zupko I, Ocsovszki I, Jovanović-Šanta S. Chemical composition, antioxidant and anticancer activity of licorice from fruska gora locality. Ind Crops Prod. 2018;112:217–224. https://doi.org/10.1016/j.indcrop.2017.11.050.

  12. Wang Q, Wei HC, Zhou SJ, Li Y, Zheng TT, Zhou CZ, Wan XH. Hyperoside: a review on its sources, biological activities, and molecular mechanisms. Phytotherapy Res. 2022. https://doi.org/10.1002/ptr.7478.

  13. Cheng C, Zhang W, Zhang C, Ji PHB, , Wu XH, Sha Z, Chen X, Wang YK, Chen TG, Cheng HB, Shi LY. Hyperoside ameliorates dss-induced colitis through mkrn1-mediated regulation of ppar gamma signaling and th17/treg balance. J Agri Food Chem. 2021;69(50):15240–15251. Available from <Go to ISI>://WOS:000730346400001. https://doi.org/10.1021/acs.jafc.1c06292.

  14. Seo JH, Youn JH, Kim EA, Jun JS, Park JS, Yeom JS, Lim JY, Woo HO, Youn HS, Ko GH, Park JS, Baik SC, Lee WK, Cho MJ, Rhee KH. Helicobacter pylori antigens inducing early immune response in infants. J Korean Med Sci. 2017;32(7):1139–46. https://doi.org/10.3346/jkms.2017.32.7.1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pinho E, Grootveld M, Soares G, Henriques M. Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohyd Polym. 2014;101:121–35. https://doi.org/10.1016/j.carbpol.2013.08.078.

    Article  CAS  Google Scholar 

  16. Fan H, Li Y, Sun M, Xiao W, Song L, Wang Q, Zhang B, Yu J, Jin X, Ma C, Chai Z. Hyperoside reduces rotenone-induced neuronal injury by suppressing autophagy. Neurochem Res. 2021;10. Available from <Go to ISI>://WOS:000686864800001. https://doi.org/10.1007/s11064-021-03404-z.

  17. Feng Y, Qin G, Chang S, Jing Z, Zhang Y, Wang Y. Antitumor effect of hyperoside loaded in charge reversed and mitochondria-targeted liposomes. Int J Nanomed.. 2021;16:3073–3089. Available from <Go to ISI>://WOS:000644871700001. https://doi.org/10.2147/ijn.s297716.

  18. Shi H, Zhao X, Gao J, Liu Z, Liu Z, Wang K, Jiang J. Acid-resistant ros-responsive hyperbranched polythioether micelles for ulcerative colitis therapy. Chin Chem Lett. 2020;31(12):3102–3106. https://doi.org/10.1016/j.cclet.2020.03.039.

  19. Beloqui A, Coco R, Alhouayek M, Solinís MA, Rodríguez-Gascón A, Muccioli GG, Préat V. Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine dss-induced colitis. International J Pharmaceutics. 2013;454(2):775–783. https://doi.org/10.1016/j.ijpharm.2013.05.017.

  20. Talaei F, Atyabi F, Azhdarzadeh M, Dinarvand R, Saadatzadeh A. Overcoming therapeutic obstacles in inflammatory bowel diseases: a comprehensive review on novel drug delivery strategies. Eur J Pharm Sci. 2013;49(4):712–722. https://doi.org/10.1016/j.ejps.2013.04.031.

  21. Ashjari M, Panahandeh F, Niazi Z, Abolhasani MM. Synthesis of plga–mpeg star-like block copolymer to form micelle loaded magnetite as a nanocarrier for hydrophobic anticancer drug. J Drug Deliv Sci Technol. 20220;56:101563. Available from https://www.sciencedirect.com/science/article/pii/S1773224719318672https://doi.org/10.1016/j.jddst.2020.101563.

  22. Rao Y, Li R, Liu S, Meng L, Wu Q, Yuan Q, Liang H, Qin M. Enhanced bioavailability and biosafety of cannabidiol nanomicelles for effective anti-inflammatory therapy. Particuology. 2022;69:1–9. Available from https://www.sciencedirect.com/science/article/pii/S1674200121002364https://doi.org/10.1016/j.partic.2021.11.010.

  23. Patil S, Ujalambkar V, Rathore A, Rojatkar S, Pokharkar V. Galangin loaded galactosylated pluronic f68 polymeric micelles for liver targeting. Biomed Pharmacother. 2019;112:108691. Available from https://www.sciencedirect.com/science/article/pii/S0753332218353666https://doi.org/10.1016/j.biopha.2019.108691.

  24. Kaur J, Singla P, Kaur I. Labrasol mediated enhanced solubilization of natural hydrophobic drugs in pluronic micelles: physicochemical and in vitro release studies. J Mol Liq. 2022;361:119596. Available from https://www.sciencedirect.com/science/article/pii/S0167732222011345https://doi.org/10.1016/j.molliq.2022.119596.

  25. Zhao L, Du J, Duan Y, Zhang H, Yang C, Cao F, Zhai G. Curcumin loaded mixed micelles composed of pluronic p123 and f68: preparation, optimization and in vitro characterization. Colloids Surf B. 2012;97:101–108. https://doi.org/10.1016/j.colsurfb.2012.04.017.

  26. Sun C, Li W, Ma P, Li Y, Zhu Y, Zhang H, Adu-Frimpong M, Deng W, Yu J, Xu X. Development of tpgs/f127/f68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137:111126. https://doi.org/10.1016/j.fct.2020.111126.

  27. Sun C, Li W, Ma P, Li Y, Zhu Y, Zhang H, Adu-Frimpong M, Deng W, Yu J, Xu X. Development of tpgs/f127/f68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137. https://doi.org/10.1016/j.fct.2020.111126.

  28. Fang XB, Zhang JM, Xie X, Liu D, He CW, Wan JB, Chen MW. Ph-sensitive micelles based on acid-labile pluronic f68-curcumin conjugates for improved tumor intracellular drug delivery. Int J Pharm. 2016;502(1–2):28–37. https://doi.org/10.1016/j.ijpharm.2016.01.029.

    Article  CAS  PubMed  Google Scholar 

  29. Cai Y, Sun Z, Fang X, Fang X, Xiao F, Wang Y, Chen M. Synthesis, characterization and anti-cancer activity of pluronic f68-curcumin conjugate micelles. Drug Deliv. 2016;23(7):2587–95. https://doi.org/10.3109/10717544.2015.1037970.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Xu Y, Wu M, Fan L, He C, Wan JB, Li P, Chen M, Li H. Vitamin e succinate-conjugated f68 micelles for mitoxantrone delivery in enhancing anticancer activity. Int J Nanomed. 2016;11:3167–78. https://doi.org/10.2147/ijn.S103556.

    Article  CAS  Google Scholar 

  31. Song Y, Tian Q, Huang Z, Fan D, She Z, Liu X, Cheng X, Yu B, Deng Y. Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled f68 containing cabazitaxel as a drug delivery system. Int J Nanomed. 2014;9:2307–17. https://doi.org/10.2147/ijn.S61220.

    Article  Google Scholar 

  32. Xie YJ, Wang QL, Adu-Frimpong M, Liu J, Zhang KY, Xu XM, Yu JN. Preparation and evaluation of isoliquiritigenin-loaded f127/p123 polymeric micelles. Drug Dev Ind Pharm. 2019;45(8):1224–1232. Available from <Go to ISI>://WOS:000473533100002. https://doi.org/10.1080/03639045.2019.1574812.

  33. Shi F, Chen L, Wang Y, Liu J, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Enhancement of oral bioavailability and anti-hyperuricemic activity of aloe emodin via novel soluplus®—glycyrrhizic acid mixed micelle system. Drug Deliv Transl Res. 2022;12(3):603–14. https://doi.org/10.1007/s13346-021-00969-8.

    Article  CAS  PubMed  Google Scholar 

  34. Shi F, Chen L, Wang Y, Liu J, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Enhancement of oral bioavailability and anti-hyperuricemic activity of aloe emodin via novel soluplus (r)-glycyrrhizic acid mixed micelle system. Drug Deliv Transl Res. 2022;12(3):603–614. Available from <Go to ISI>://WOS:000640464300002. https://doi.org/10.1007/s13346-021-00969-8.

  35. Xia X, Zhang J, Adu‑Frimpong M, Li X, Shen X, He Q, Rong W, Ji H, Toreniyazov E, Xu X, Yu J. Hyperoside-loaded tpgs/mpeg-pdlla self-assembled polymeric micelles: Preparation, characterization and in vitro/in vivo evaluation. Pharm Dev Technol. 2022;1–13. https://doi.org/10.1080/10837450.2022.2122506.

  36. Guo Y, Gao T, Fang F, Sun S, Yang D, Li Y, Lv S. A novel polymer micelle as a targeted drug delivery system for 10-hydroxycamptothecin with high drug-loading properties and anti-tumor efficacy. Biophys Chem. 2021;279:106679. https://doi.org/10.1016/j.bpc.2021.106679.

    Article  CAS  PubMed  Google Scholar 

  37. Rong W, Shen X, Adu-Frimpong M, He Q, Zhang J, Li X, Xia X, Shi F, Cao X, Ji H, Toreniyazov E, et al. Pinocembrin polymeric micellar drug delivery system: preparation, characterisation and anti-hyperuricemic activity evaluation. J Microencapsul. 2022;39(5):419–432. Available from https://doi.org/10.1080/02652048.2022.2096138https://doi.org/10.1080/02652048.2022.2096138.

  38. Wang Q, Wei C, Weng W, Bao R, Adu-Frimpong M, Toreniyazov E, Ji H, Xu XM, Yu J. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int J Pharm. 2021;592:120036. https://doi.org/10.1016/j.ijpharm.2020.120036.

  39. Wang Y, Chen L, Adu‐Frimpong M, Wei C, Weng W, Wang Q, Xu XM, Yu J. Preparation, in vivo and in vitro evaluation, and pharmacodynamic study of dmy-loaded self-microemulsifying drug delivery system. Eur J Lipid Sci Technol. 2021;123(6):2000369. https://doi.org/10.1002/ejlt.202000369.

  40. Wang Y, Chen L, Adu-Frimpong M, Wei C, Weng W, Wang Q, Xu XM, Yu J. Preparation, in vivo and in vitro evaluation, and pharmacodynamic study of dmy-loaded self-microemulsifying drug delivery system. Eur J Lipid Sci Technol. 2021;123(6):2000369. https://doi.org/10.1002/ejlt.202000369.

    Article  CAS  Google Scholar 

  41. Wang Y, Chen L, Adu‐Frimpong M, Wei C, Weng W, Wang Q, Xu XM, Yu J. Preparation, in vivo and in vitro evaluation, and pharmacodynamic study of dmy-loaded self-microemulsifying drug delivery system. Eur J Lipid Sci Technol. 2021;123(6). https://doi.org/10.1002/ejlt.202000369.

  42. Liu J, Zhu Z, Yang Y, Adu-Frimpong M, Chen L, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Preparation, characterization, pharmacokinetics, and antirenal injury activity studies of licochalcone a-loaded liposomes. J Food Biochem. 2022;46(1):e14007. https://doi.org/10.1111/jfbc.14007.

    Article  CAS  PubMed  Google Scholar 

  43. Li X, Xia X, Zhang J, Adu-Frimpong M, Shen X, Yin W, He Q, Rong W, Shi F, Cao X, Ji H. Preparation, physical characterization, pharmacokinetics and anti-hyperglycemic activity of esculetin-loaded mixed micelles. J Pharma Sci. 2022. Available from https://www.sciencedirect.com/science/article/pii/S0022354922002878. https://doi.org/10.1016/j.xphs.2022.06.022.

  44. Weng W, Wang Q, Wei C, Man N, Zhang K, Wei Q, Adu-Frimpong M, Toreniyazov E, Ji H, Yu J, Xu X. Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. Int J Pharm. 2019;572:118735. https://doi.org/10.1016/j.ijpharm.2019.118735.

  45. Liu J, Wang Q, Adu-Frimpong M, Wei Q, Xie Y, Zhang K, Wei C, Weng W, Ji H, Toreniyazov E. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded tpgs modified proliposomes. Int J Pharm. 2019;563:53–62. https://doi.org/10.1016/j.ijpharm.2019.03.034.

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Wang Q, Adu-Frimpong M, Wei Q, Xie Y, Zhang K, Wei C, Weng W, Ji H, Toreniyazov E, Xu X, Yu J. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded tpgs modified proliposomes. Int J Pharm. 2019;563:53–62. https://doi.org/10.1016/j.ijpharm.2019.03.034.

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Wang Q, Adu-Frimpong M, Wei Q, Xie Y, Zhang K, Wei C, Weng W, Ji H, Toreniyazov E, Xu X. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded tpgs modified proliposomes. Int J Pharm. 2019;563:53–62. Available from <Go to ISI>://WOS:000466146400006. https://doi.org/10.1016/j.ijpharm.2019.03.034.

  48. Liu Y, Sun C, Li W, Adu-Frimpong M, Wang Q, Yu J, Xu X. Preparation and characterization of syringic acid-loaded tpgs liposome with enhanced oral bioavailability and in vivo antioxidant efficiency. Aaps Pharmscitech. 2019;20(3). Available from <Go to ISI>://WOS:000457677200002. https://doi.org/10.1208/s12249-019-1290-6.

  49. Chin KJ, Macachor J, Ong KC, Ong BC. A comparison of 5% dextrose in 0.9% normal saline versus non-dextrose-containing crystalloids as the initial intravenous replacement fluid in elective surgery. Anaesthesia Intensive Care. 2006;34(5):613–617. Available from <Go to ISI>://WOS:000242526700008. https://doi.org/10.1177/0310057x0603400511.

  50. Gutman Y, Krausz M. Regulation of food and water intake in rats as related to plasma osmolarity and volume. Physiol Behav. 1969;4(3):311–313. https://doi.org/10.1016/0031-9384(69)90181-4.

  51. Zhu Y, Peng W, Zhang J, Wang M, Firempong CK, Feng C, Liu H, Xu X, Yu J. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: preparation, in vitro and in vivo evaluation. J Function Food. 2014;8:358–366. https://doi.org/10.1016/j.jff.2014.04.001.

  52. Zou L, Chen S, Li L, Wu T. The protective effect of hyperoside on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of nrf2. Exp Toxicol Pathol. 2017;69(7):451–460. Available from https://www.sciencedirect.com/science/article/pii/S0940299316301348https://doi.org/10.1016/j.etp.2017.04.001.

  53. Xiao B, Si X, Zhang M, Merlin D. Oral administration of ph-sensitive curcumin-loaded microparticles for ulcerative colitis therapy. Colloids Surf B Biointerfaces. 2015;135:379–385. https://doi.org/10.1016/j.colsurfb.2015.07.081.

  54. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investigation. 1993;69(2):238–249.

  55. Zhang SF, Hu W, Yan X, Wang D, Yang W, Zhang J, Liu Z. Chondroitin sulfate-curcumin micelle with good stability and reduction sensitivity for anti-cancer drug carrier. Mater Lett. 2021;304:130667. https://doi.org/10.1016/j.matlet.2021.130667.

  56. Zhang X, Yuan J, Zhou N, Shen K, Wang Y, Wang K, Zhu H. Omarigliptin prevents tnf-α-induced cellular senescence in rat aorta vascular smooth muscle cells. Chem Res Toxicol. 2021;34(9):2024–31. https://doi.org/10.1021/acs.chemrestox.1c00076.

    Article  CAS  PubMed  Google Scholar 

  57. Le-Vinh B, Le NM, Nazir I, Matuszczak B, Bernkop-Schnürch A. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. Int J Biol Macromol. 2019;133:647–655. Available from https://www.sciencedirect.com/science/article/pii/S0141813019317556. https://doi.org/10.1016/j.ijbiomac.2019.04.081.

  58. Thant Y, Wang Q, Wei C, Liu J, Zhang K, Bao R, Zhu Q, Weng W, Yu Q, Zhu Y, Xu X. Tpgs conjugated pro-liposomal nano-drug delivery system potentiate the antioxidant and hepatoprotective activity of myricetin. J Drug Deliv Sci Technol. 2021;66:102808. https://doi.org/10.1016/j.jddst.2021.102808.

  59. Shen B, Wu N, Shen C, Zhang F, Wu Y, Xu P, Zhang L, Wu W, Lu Y, Han J. Hyperoside nanocrystals for hbv treatment: process optimization, in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2016;42(11):1772–81. https://doi.org/10.3109/03639045.2016.1173051.

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Peng F, Liu F, Xiao Y, Li F, Lei H, Wang J, Li M, Xu H. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: fabrication, characterization, and in vitro release property. LWT. 2020;133:109869. https://doi.org/10.1016/j.lwt.2020.109869.

  61. Kumari V, Tyagi P, Sangal A. In-vitro kinetic release study of illicium verum (chakraphool) polymeric nanoparticles. Mater Today Proc. 2022;60:14–20. https://doi.org/10.1016/j.matpr.2021.11.014.

    Article  CAS  Google Scholar 

  62. Zhang G, Huang L, Wu J, Liu Y, Zhang Z, Guan Q. Doxorubicin-loaded folate-mediated ph-responsive micelle based on bletilla striata polysaccharide: release mechanism, cellular uptake mechanism, distribution, pharmacokinetics, and antitumor effects. Int J Biol Macromol. 2020;164:566–77. https://doi.org/10.1016/j.ijbiomac.2020.07.123.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu Z, Liu J, Yang Y, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Smedds for improved oral bioavailability and anti-hyperuricemic activity of licochalcone A. J Microencapsul. 2021;38(7–8):459–471. https://doi.org/10.1080/02652048.2021.1963341.

  64. Kazi M, Alhajri A, Alshehri SM, Elzayat EM, Al Meanazel OT, Shakeel F, Noman O, Altamimi MA, Alanazi FK. Enhancing oral bioavailability of apigenin using a bioactive self-nanoemulsifying drug delivery system (bio-snedds): in vitro, in vivo and stability evaluations. Pharmaceutics. 2020;12(8):749. https://doi.org/10.3390/pharmaceutics12080749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bapat P, Ghadi R, Chaudhari D, Katiyar SS, Jain S. Tocophersolan stabilized lipid nanocapsules with high drug loading to improve the permeability and oral bioavailability of curcumin. Int J Pharm. 2019;560:219–27. https://doi.org/10.1016/j.ijpharm.2019.02.013.

    Article  CAS  PubMed  Google Scholar 

  66. Ji H, Tang J, Li M, Ren J, Zheng N, Wu L. Curcumin-loaded solid lipid nanoparticles with brij78 and tpgs improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv. 2016;23(2):459–70. https://doi.org/10.3109/10717544.2014.918677.

    Article  CAS  PubMed  Google Scholar 

  67. Duan Y, Zhang B, Chu L, Tong HH, Liu W, Zhai G. Evaluation in vitro and in vivo of curcumin-loaded mpeg-pla/tpgs mixed micelles for oral administration. Colloids Surf B. 2016;141:345–54. https://doi.org/10.1016/j.colsurfb.2016.01.017.

    Article  CAS  Google Scholar 

  68. Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, Wang H, Zhou Q, Yu S. Plga nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem. 2011;59(17):9280–9. https://doi.org/10.1021/jf202135j.

    Article  CAS  PubMed  Google Scholar 

  69. Chen Q, Gou S, Ma P, Song H, Zhou X, Huang Y, Han MK, Wan Y, Kang Y, Xiao B. Oral administration of colitis tissue-accumulating porous nanoparticles for ulcerative colitis therapy. Int J Pharm. 2019;557:135–44. https://doi.org/10.1016/j.ijpharm.2018.12.046.

    Article  CAS  PubMed  Google Scholar 

  70. Csernus B, Biró S, Babinszky L, Komlósi I, Jávor A, Stündl L, Remenyik J, Bai P, Oláh J, Pesti-Asbóth G. Effect of carotenoids, oligosaccharides and anthocyanins on growth performance, immunological parameters and intestinal morphology in broiler chickens challenged with escherichia coli lipopolysaccharide. Animals. 2020;10(2):347. https://doi.org/10.3390/ani10020347.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tatiya-aphiradee N, Chatuphonprasert W, Jarukamjorn K. Ethanolic garcinia mangostana extract and α-mangostin improve dextran sulfate sodium-induced ulcerative colitis via the suppression of inflammatory and oxidative responses in icr mice. J Ethnopharmacol. 2021;265:113384. https://doi.org/10.1016/j.jep.2020.113384.

  72. Zhou H, Ichikawa A, Ikeuchi-Takahashi Y, Hattori Y, Onishi H. Nanogels of succinylated glycol chitosan-succinyl prednisolone conjugate: preparation, in vitro characteristics and therapeutic potential. Pharmaceutics. 2021;11(7):333. https://doi.org/10.3390/pharmaceutics11070333.

Download references

Acknowledgements

The authors appreciate the Institute of Pharmacy, Jiangsu University (Zhenjiang, China), for providing the necessary facilities to produce this manuscript. We also thank the University Ethics Committee for playing a key role in approving the animal experimentation directive.

Funding

This work was funded by the National Key R&D Program of China [grant numbers: 2018YFE0208600], National Natural Science Foundation of China [grant numbers: 81720108030 and 8217131836], Jiangsu Postdoctoral Research Foundation [grant numbers:2021K010A], Natural Science Foundation of Jiangsu Universities [grant numbers: 18KJB360001], Key planning social development projects of Zhenjiang in Jiangsu Province [grant numbers:SH2021024] and Natural Science Foundation of Jiangsu Province (BK20220529).

Author information

Authors and Affiliations

Authors

Contributions

Xingcheng Jin and Xiaoli Xia: methodology, validation, formal analysis, data curation, writing—original draft, visualization. Jiaying Li: methodology, investigation. Xiaowen Wang: software, formal analysis. Huaxiao Wu: validation, investigation. Michael Adu-Frimpong: writing—review & editing. Qingtong Yu: project administration. Hao Jic: Project administration. Elmurat Toreniyazov: Project administration. Xia Cao: supervision. Qilong Wang: conceptualization, methodology, supervision. Jiangnan Yu: resources, supervision project administration, funding acquisition. Ximing Xu: supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Xia Cao, Jiangnan Yu or Ximing Xu.

Ethics declarations

Ethics approval and consent to participate

All institutional and national guidelines for the care and use of laboratory animals were followed.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Xia, X., Li, J. et al. Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles. Drug Deliv. and Transl. Res. 14, 1370–1388 (2024). https://doi.org/10.1007/s13346-023-01470-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01470-0

Keywords

Navigation