Skip to main content
Log in

Formulation and optimization of pH-sensitive nanocrystals for improved oral delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The challenge of low water solubility in pharmaceutical science profoundly impacts drug absorption and therapeutic effectiveness. Nanocrystals (NC), consisting of drug molecules and stabilizing agents, offer a promising solution to enhance solubility and control release rates. In the pharmaceutical industry, top-down techniques are favored for their flexibility and cost-effectiveness. However, increased solubility can lead to premature drug dissolution in the stomach, which is problematic due to the acidic pH or enzymes. Researchers are exploring encapsulating agents that facilitate drug release at customized pH levels as a valuable strategy to address this. This study employed wet milling and spray drying techniques to create encapsulated NC for delivering the drug to the intestinal tract using the model drug ivermectin (IVM). Nanosuspensions (NS) were efficiently produced within 2 h using NanoDisp®, with a particle size of 198.4 ± 0.6 nm and a low polydispersity index (PDI) of 0.184, ensuring uniformity. Stability tests over 100 days at 4 °C and 25 °C demonstrated practical viability, with no precipitation or significant changes observed. Cytotoxicity evaluations indicated less harm to Caco-2 cells compared to the pure drug. Furthermore, the solubility of the NC increased by 47-fold in water and 4.8-fold in simulated intestinal fluid compared to the pure active compound. Finally, dissolution tests showed less than 10% release in acidic conditions and significant improvement in simulated intestinal conditions, promising enhanced drug solubility and bioavailability. This addresses a long-standing pharmaceutical challenge in a cost-effective and scalable manner.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

AE:

Acryl-EZE® (Eudragit L100-55)

BCS:

Biopharmaceutical classification system

DLS:

Dynamic light scattering

DSC:

Differential scanning colorimetry

FTIR:

Fourier-transform infrared spectra

HPMC:

Hydroxypropylmethylcellulose

IVM:

Ivermectin

NC:

Nanocrystals

NC-AE 10%:

Ivermectin nanocrystals with 10% Acryl-EZE®

NC-AE 25%:

Ivermectin nanocrystals with 25% Acryl-EZE®

NC-AE 40%:

Ivermectin nanocrystals with 40% Acryl-EZE®

NS:

Nanosuspension

NS-IVM P188 1:2:

Ivermectin nanosuspension with poloxamer 188 in a ratio 1:2

P188:

Poloxamer 188

PDI:

Polydispersity index

PM:

Physical mixture

PVP:

Polyvinylpyrrolidone

SEM:

Scanning electron microscopy

SLS:

Sodium lauryl sulfate

T80:

Tween 80

TGA:

Thermogravimetric analysis

XR:

Powder X-ray diffraction

References

  1. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

  2. Pharmaceutical innovation by the seven UK‐owned pharmaceutical companies (1964‐1985). - Prentis - 1988 -Br J Clin Pharmacol - Wiley Online Library [Internet]. [citado 14 de agosto de 2023]. Disponible en: https://doi.org/10.1111/j.1365-2125.1988.tb03318.x.

  3. Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv. 2014;11(1):45–59.

  4. Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: a perspective on translational research and clinical studies. Bioeng Transl Med. 2018;4(1):5–16.

  5. An overview of clinical and commercial impact of drug delivery systems - ScienceDirect [Internet]. [citado 14 de agosto de 2023]. Disponible en: https://www.sciencedirect.com/science/article/pii/S0168365914002193?via%3Dihub.

  6. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:1–10.

  7. Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202.

  8. Lopez-Vidal L, Real DA, Paredes AJ, Real JP, Daniel Palma S. 3D-printed nanocrystals for oral administration of the drugs. En: Shahzad Y, Rizvi SAA, Yousaf AM, editores. Drug Delivery Using Nanomaterials. Taylor and Francis; 2022.

  9. Müller RH, Gohla S, Keck CM. State of the art of nanocrystals – Special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.

  10. Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1):202–9.

  11. McGuckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF, et al. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Controlled Release. 2022;345:334–53.

  12. Lopez-Vidal L, Real JP, Real DA, Camacho N, Kogan MJ, Paredes AJ, et al. Nanocrystal-based 3D-printed tablets: semi-solid extrusion using melting solidification printing process (MESO-PP) for oral administration of poorly soluble drugs. Int J Pharm. 2022;611:121311.

  13. Maderuelo C, Lanao JM, Zarzuelo A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur J Pharm Sci. 2019;138:105019.

  14. Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, et al. pH and its applications in targeted drug delivery. Drug Discov Today. 2023;28(1):103414.

  15. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Frontiers | Advances in oral drug delivery for regional targeting in the gastrointestinal tract - Influence of physiological, pathophysiological and pharmaceutical factors [Internet]. [citado 14 de agosto de 2023]. Disponible en: https://doi.org/10.3389/fphar.2020.00524/full.

  17. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies - PMC [Internet]. [citado 14 de agosto de 2023]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8771547/.

  18. Klojdová I, Milota T, Smetanová J, Stathopoulos C. Encapsulation: a strategy to deliver therapeutics and bioactive compounds? Pharmaceuticals. 2023;16(3):362.

    Article  Google Scholar 

  19. Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol. 2022;19(4):219–38.

    Article  CAS  Google Scholar 

  20. Patra ChN, Priya R, Swain S, Kumar Jena G, Panigrahi KC, Ghose D. Pharmaceutical significance of Eudragit: a review. Future J Pharm Sci. 2017;3(1):33–45.

  21. Engineered nanoparticles of Efavirenz using methacrylate co-polymer (Eudragit-E100) and its biological effects in-vivo - ScienceDirect [Internet]. [citado 14 de agosto de 2023]. Disponible en: https://www.sciencedirect.com/science/article/pii/S0928493116304933?casa_token=3xbWpTDBfEUAAAAA:duLOPwgWnCRc3w8vP628ITxLn0_Grinffkg14tnqVBUl4VoeZZsHNq02K0W1H57ihlG3ZDebKf6z.

  22. Seremeta KP, Arrúa EC, Okulik NB, Salomon CJ. Development and characterization of benznidazole nano- and microparticles: a new tool for pediatric treatment of Chagas disease? Colloids Surf B Biointerfaces. 2019;177:169–77.

  23. Andrés Real D, Gagliano A, Sonsini N, Wicky G, Orzan L, Leonardi D, et al. Design and optimization of pH-sensitive Eudragit nanoparticles for improved oral delivery of triclabendazole. Int J Pharm. 2022;617:121594.

  24. Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346(1):160–8.

  25. Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A systematic overview of Eudragit® based copolymer for smart healthcare. Pharmaceutics. 2023;15(2):587.

  26. User S. Colorcon® – Líder mundial en el desarrollo de productos farmacéuticos [Internet]. [citado 30 de agosto de 2023]. Disponible en: https://www.colorcon.com/es/.

  27. Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot (Tokyo). 2020;73(9):593–602.

  28. Laing R, Gillan V, Devaney E. Ivermectin – Old drug, new tricks? Trends Parasitol. 2017;33(6):463–72.

  29. WHO Model Lists of Essential Medicines [Internet]. [citado 14 de agosto de 2023]. Disponible en: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists.

  30. Krolewiecki A, Lifschitz A, Moragas M, Travacio M, Valentini R, Alonso DF, et al. Antiviral effect of high-dose ivermectin in adults with COVID-19: a proof-of-concept randomized trial. eClinicalMedicine. 2021;37:100959.

  31. Macedo L de O, Barbosa EJ, Löbenberg R, Bou-Chacra NA. Anti-inflammatory drug nanocrystals: state of art and regulatory perspective. Eur J Pharm Sci. 2021;158:105654.

  32. Phuna ZX, Panda BP, Shivashekaregowda NKH, Madhavan P. Recent development in nanocrystal based drug delivery for neurodegenerative diseases: scope, challenges, current and future prospects. J Drug Deliv Sci Technol. 2022;68:102921.

  33. Malamatari M, Taylor KMG, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018;23(3):534–47.

  34. Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2006;62(3):282–7.

  35. Paredes AJ, Camacho NM, Schofs L, Dib A, del Zarazaga MP, Litterio N, et al. Ricobendazole nanocrystals obtained by media milling and spray drying: pharmacokinetic comparison with the micronized form of the drug. Int J Pharm. 2020;585:119501.

  36. US Pharmacopeia (USP) [Internet]. [citado 21 de febrero de 2023]. Disponible en: https://www.usp.org/.

  37. Rowe RC, editor. Handbook of pharmaceutical excipients. 5. ed., repr. London: Pharmaceutical Press [u.a.]; 2008. 918 p.

  38. Burdock GA. Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food Chem Toxicol. 2007;45(12):2341–51.

  39. Catalan-Figueroa J, García MA, Contreras P, Boisset CB, Gonzalez PM, Fiedler JL, et al. Poloxamer 188-coated ammonium methacrylate copolymer nanocarriers enhance loperamide permeability across Pgp-expressing epithelia. Mol Pharm. 2021;18(2):743–50.

    Article  CAS  PubMed  Google Scholar 

  40. Starkloff WJ, Bucalá V, Palma SD, Gonzalez Vidal NL. Design and in vitro characterization of ivermectin nanocrystals liquid formulation based on a top–down approach. Pharm Dev Technol. 2017;22:809–817.

  41. Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci. 2015;223:40–54.

  42. Rezazadeh M, Safaran R, Minaiyan M, Mostafavi A. Preparation and characterization of Eudragit L 100–55/chitosan enteric nanoparticles containing omeprazole using general factorial design: in vitro/in vivo study. Res Pharm Sci. 2021;16(4):358–69.

  43. Eudragit®: a technology evaluation: Expert Opinion on Drug Delivery: Vol 10, No 1 [Internet]. [citado 14 de agosto de 2023]. Disponible en: https://doi.org/10.1517/17425247.2013.736962.

  44. Hashmat D, Shoaib MH, Mehmood ZA, Bushra R, Yousuf RI, Lakhani F. Development of enteric coated flurbiprofen tablets using Opadry/acryl-eze System—A technical note. AAPS PharmSciTech. 2008;9(1):116–21.

  45. Sun H, Liu D, Li Y, Tang X, Cong Y. Preparation and in vitro/in vivo characterization of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR. Int J Nanomedicine. 2014;9:1709–16.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Singh G, Pai RS. Atazanavir-loaded Eudragit RL 100 nanoparticles to improve oral bioavailability: optimization and in vitro/in vivo appraisal. Drug Deliv. 2016;23:532–9.

    Article  CAS  PubMed  Google Scholar 

  47. Li P, et al. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J Microencapsul. 2015;32:40–5.

    Article  PubMed  Google Scholar 

  48. Hao S, et al. Preparation of Eudragit L 100–55 enteric nanoparticles by a novel emulsion diffusion method. Colloids Surf B Biointerfaces. 2013;108:127–33.

    Article  CAS  PubMed  Google Scholar 

  49. Mandalaywala R, Rana A, Ramos AL, Sampson P, Ashkenas J. Physical and pharmacokinetic characterization of Soluvec™, a novel, solvent-free aqueous ivermectin formulation. Ther Deliv. 2023;14(6):391–9.

    Article  CAS  Google Scholar 

  50. Li J, Sonje J, Suryanarayanan R. Role of Poloxamer 188 in preventing ice-surface-induced protein destabilization during freeze–thawing. Mol Pharm [Internet]. 2023. Disponible en: https://doi.org/10.1021/acs.molpharmaceut.3c00312.

  51. Lopez-Vidal L, Paredes AJ, Palma SD, Real JP. Design and development of sublingual printlets containing domperidone nanocrystals using 3D melting solidification printing process (MESO-PP). Pharmaceutics. 2023;15(5):1459.

    Article  CAS  Google Scholar 

  52. Bianchi MB, Zhang C, Catlin E, Sandri G, Calderón M, Larrañeta E, et al. Bioadhesive eutectogels supporting drug nanocrystals for long-acting delivery to mucosal tissues. Mater Today Bio. 2022;17:100471.

  53. Rolim LA, dos Santos FCM, Chaves LL, Gonçalves MLCM, Freitas-Neto JL, da Silva do Nascimento AL, et al. Preformulation study of ivermectin raw material. J Therm Anal Calorim. 2015;120(1):807–16.

  54. Sharma A, Jain CP, Tanwar YS. Preparation and characterization of solid dispersions of carvedilol with Poloxamer 188. J Chil Chem Soc. 2013;58(1):1553–7.

    Article  CAS  Google Scholar 

  55. Voorhees PW. The theory of Ostwald ripening. J Stat Phys. 1985;38(1):231–52. 56.

  56. Ely DR, Edwin García R, Thommes M. Ostwald–Freundlich diffusion-limited dissolution kinetics of nanoparticles. Powder Technol. 2014;257:120–3.

  57. Real JP, Real DA, Lopez-Vidal L, Barrientos BA, Bolaños K, Tinti MG, et al. 3D-printed gastroretentive tablets loaded with niclosamide nanocrystals by the melting solidification printing process (MESO-PP). Pharmaceutics. 2023;15(5):1387.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Daniel Real thanks FONCYT (Argentina) for a postdoctoral fellowship.

Funding

This research was funded by “Fondo para la Investigación Científica y Tecnológica (FONCyT), funding number PICT 2020-SERIEA-02037,” and Consejo Nacional de Investigación Científicas y Técnicas (CONICET), funding number PIP 11220200100580CO. The authors gratefully acknowledge the Universidad Nacional de Córdoba (Argentina) and CONICET (Argentina) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Lucía Lopez-Vidal: investigation, methodology, formal analysis, validation, writing—original draft, conceptualization. Pedro Parodi: investigation, methodology. Maribel Actis: investigation and methodology. Nahuel Camacho: investigation, methodology. Daniel Andrés Real: methodology, writing—review and editing. Fernando Irazoqui: resources, conceptualization, writing—review and editing. Alejandro J. Paredes: conceptualization, writing—review and editing. Juan Pablo Real: conceptualization, supervision, formal analysis, writing—review and editing. Santiago Daniel Palma: resources, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Santiago Daniel Palma.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Vidal, L., Parodi, P., Actis, M.R. et al. Formulation and optimization of pH-sensitive nanocrystals for improved oral delivery. Drug Deliv. and Transl. Res. 14, 1301–1318 (2024). https://doi.org/10.1007/s13346-023-01463-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01463-z

Keywords

Navigation