Skip to main content
Log in

Enhanced biopharmaceutical performance of brick dust molecule nilotinib via stabilized amorphous nanosuspension using a facile acid–base neutralization approach

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

“Brick dust” compounds have high lattice energy as manifested by the poor aqueous solubility and suboptimal bioavailability. Nilotinib being a weakly basic brick dust molecule exhibits erratic and limited absorption during gastrointestinal transit, attributed to pre-absorptive factors like pH-dependent solubility, poor dissolution kinetics, and post-absorptive factors including P-gp-mediated drug efflux. In our study, these problems are addressed holistically by the successful fabrication of amorphous nanosuspension by an acid–base neutralization approach. The nanosuspension was obtained via rapid precipitation of nilotinib in an amorphous form and the generated in situ sodium chloride salt assisted in stabilizing the drug-loaded nanosuspension in a cage of salt and micellar stabilizer. Soluplus® and hypromellose acetate succinate (HPMCAS) were employed as a novel combination of stabilizers. Systematic optimization was carried out by employing the I-optimal method using Design Expert® software with a concentration of HPMCAS and Soluplus® as independent variables and evaluating them for responses viz particle size, polydispersity index (PDI), and zeta potential. The resultant nanosuspension showed a mean particle size of 130.5 ± 1.22 nm with a PDI value of 0.27 ± 0.01, and a zeta potential of − 5.21 ± 0.91 mV. The nanosuspension was further characterized for morphology, dissolution, and in vivo pharmacokinetics study. X-ray powder diffraction study of the nano-formulation displayed a halo pattern revealing the amorphous form. Stability studies showed that the nanosuspension remained stable at 40 °C ± 2 °C and 75% RH ± 5% RH for a period of three months. In vitro drug release and solubility study showed threefold and 36-fold enhancement in dissolution and solubility of the nanosuspension. Furthermore, an in vivo pharmacokinetic study in Sprague–Dawley rats following oral administration displayed a 1.46-fold enhancement in the relative bioavailability of the nanosuspension in contrast to neat nilotinib.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are provided in this published article and supplementary information.

Abbreviations

Nil:

Nilotinib

Nil-NS:

Nilotinib nanosuspension

CMC:

Critical micelle concentration

PDI:

Polydispersity index

PVP-VA:

Poly vinyl pyrrolidone-vinyl acetate

HPMCAS:

Hydroxypropylmethylcellulose acetate succinate

SLS:

Sodium lauryl sulfate

TPGS:

Tocopherol polyethylene glycol succinate

RDI:

Redispersibility index

DLS:

Dynamic light scattering

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

PXRD:

Powder X-ray diffraction

FaSSIF:

Fasted state simulated intestinal fluid

FeSSIF:

Fed state simulated intestinal fluid

FaSSGF:

Fasted state simulated gastric fluid

GI:

Gastrointestinal

SGF:

Simulated gastric fluid

UWL:

Unstirred water layer

PSA:

Parameter sensitivity analysis

AUC:

Area under curve

References

  1. European Medicines Agency (EMA). Assessment report for Tasigna (nilotinib) procedure No.: EMEA/H/C/000798/X/0028. 2010. p. 41.

  2. Shukla S, Skoumbourdis AP, Walsh MJ, Hartz AMS, Fung KL, Wu C, et al. Synthesis and characterization of a BODIPY conjugate of the BCR-ABL kinase inhibitor Tasigna (nilotinib): evidence for transport of Tasigna and its fluorescent derivative by ABC drug transporters. Mol Pharm. 2011;8:1292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boons CCLM, den Hartog YM, Janssen JJWM, Zandvliet AS, Vos RM, Swart EL, et al. Food-effect study of nilotinib in chronic myeloid leukaemia (NiFo study): enabling dose reduction and relief of treatment burden. Eur J Haematol. 2020;105:148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahon FX, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F, et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Can Res. 2008;68:9809–16.

    Article  CAS  Google Scholar 

  5. Jesson G, Brisander M, Andersson P, Demirbüker M, Derand H, Lennernäs H, et al. Carbon dioxide-mediated generation of hybrid nanoparticles for improved bioavailability of protein kinase inhibitors. AAPS Pharm Res. 2014;31:694–705.

    Article  CAS  Google Scholar 

  6. Koehl NJ, Holm R, Kuentz M, Griffin BT. New insights into using lipid based suspensions for ‘Brick Dust’ molecules : case study of nilotinib. AAPS Pharm Res. 2019;36.

  7. Kesisoglou F, Panmai S, Wu Y. Nanosizing - oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44.

    Article  CAS  PubMed  Google Scholar 

  8. Xu Y, Liu X, Lian R, Zheng S, Yin Z, Lu Y, et al. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. Int J Pharm. 2012;438:287–95.

    Article  CAS  PubMed  Google Scholar 

  9. Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413:237–44.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Han X, Wang J, Wang Y. Preparation, characterization and in vivo evaluation of amorphous tacrolimus nanosuspensions produced using CO2-assisted in situ nanoamorphization method. Int J Pharm. 2016;505:35–41.

    Article  CAS  PubMed  Google Scholar 

  11. Shen G, Cheng L, Wang LQ, Zhang LH, De SB, Liao WB, et al. Formulation of dried lignans nanosuspension with high redispersibility to enhance stability, dissolution, and oral bioavailability. Chin J Nat Med. 2016;14:757–68.

    CAS  PubMed  Google Scholar 

  12. Van Ngo H, Park C, Tran TTD, Nguyen VH, Lee BJ. Mechanistic understanding of salt-induced drug encapsulation in nanosuspension via acid-base neutralization as a nanonization platform technology to enhance dissolution rate of pH-dependent poorly water-soluble drugs. Eur J Pharm Biopharm. 2020;154:8–17.

    Article  PubMed  Google Scholar 

  13. Thakore SD, Sirvi A, Joshi VC, Panigrahi SS, Manna A, Singh R, et al. Biorelevant dissolution testing and physiologically based absorption modeling to predict in vivo performance of supersaturating drug delivery systems. Int J Pharm. Elsevier B.V.; 2021;607:120958.

  14. Thadkala K, Nanam PK, Rambabu B, Sailu C, Aukunuru J. Preparation and characterization of amorphous ezetimibe nanosuspensions intended for enhancement of oral bioavailability. Int J Pharm Investig. 2014;4:131–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shamma RN, Basha M. Soluplus® : a novel polymeric solubilizer for optimization of carvedilol solid dispersions : formulation design and effect of method of preparation. Powder Technol. 2013;237:406–14.

    Article  CAS  Google Scholar 

  16. Yang H, Teng F, Wang P, Tian B, Lin X, Hu X, et al. Investigation of a nanosuspension stabilized by Soluplus to improve bioavailability. Int J Pharm. 2014;477:88–95.

    Article  CAS  PubMed  Google Scholar 

  17. Zeng Y, Li S, Liu C, Gong T, Sun X, Fu Y, et al. Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo. Acta Pharmacol Sin. 2017;38:424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nishiyama Y, Kokubo H. Evaluation of hypromellose acetate succinate (HPMCAS) as a carrier in solid dispersions. Drug Dev Ind Pharm. 2004;30:9–17.

    Article  PubMed  Google Scholar 

  19. Alshahrani SM, Lu W, Park J, Morott JT, Alsulays BB, Majumdar S, et al. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF. AAPS PharmSciTech. 2015;16:824–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baka E, Comer JEA, Tak K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J Pharm Biomed Anal. 2008;46:335–41.

    Article  CAS  PubMed  Google Scholar 

  21. Takács-Novák K, Szőke V, Völgyi G, Horváth P, Ambrus R, Szabó-Révész P. Biorelevant solubility of poorly soluble drugs: rivaroxaban, furosemide, papaverine and niflumic acid. J Pharm Biomed Anal. 2013;83:279–85.

    Article  PubMed  Google Scholar 

  22. Sun DD, Lee PI. Commentary haste makes waste : the interplay between dissolution and precipitation of supersaturating formulations. AAPS J. 2015;17:1317–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gajera BY, Shah DA, Dave RH. Investigating a novel hot melt extrusion-based drying technique to solidify an amorphous nanosuspension using design of experiment methodology. AAPS PharmSciTech. 2018;19:3778–90.

    Article  CAS  PubMed  Google Scholar 

  24. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.

    Article  PubMed  Google Scholar 

  25. Gadadare R, Mandpe L, Pokharkar V. Ultra rapidly dissolving repaglinide nanosized crystals prepared via bottom- up and top-down approach : influence of food on pharmacokinetics behavior. AAPS PharmSciTech. 2014;16:787–99.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verma S, Lan Y, Gokhale R, Burgess DJ. Quality by design approach to understand the process of nanosuspension preparation. Int J Pharm. 2009;377:185–98.

    Article  CAS  PubMed  Google Scholar 

  27. Sharma OP, Patel V, Mehta T. Design of experiment approach in development of febuxostat nanocrystal : application of Soluplus® as stabilizer. Powder Technol. 2016;302:396–405.

    Article  CAS  Google Scholar 

  28. Sarabu S, Kallakunta VR, Bandari S, Batra A, Bi V, Durig T, et al. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: effect of drug physicochemical properties. Carbohyd Polym. 2020;233:115828.

    Article  CAS  Google Scholar 

  29. Liu Y, Sun C, Hao Y, Jiang T, Zheng L, Wang S. Mechanism of dissolution enhancement and bioavailability of poorly water soluble celecoxib by preparing stable amorphous nanoparticles. J Pharm Pharm Sci. 2010;13:589–606.

    Article  CAS  PubMed  Google Scholar 

  30. Tran TT, Tran PH, Ngoc M, Nguyen U, Thi K, Tran M, et al. Amorphous isradipine nanosuspension by the sonoprecipitation method. Int J Pharm. 2014;474:146–50.

    Article  CAS  PubMed  Google Scholar 

  31. Tanida S, Kurokawa T, Sato H, Kadota K, Tozuka Y. Evaluation of the micellization mechanism of an amphipathic graft copolymer with enhanced solubility of ipriflavone. Chem Pharm Bull. 2016;64:68–72.

    Article  Google Scholar 

  32. Won Y, Brannan AK, Davis HT, Bates FS. Cryogenic transmission electron microscopy (Cryo-TEM) of micelles and vesicles formed in water by poly(ethylene oxide)-based block copolymers. J Phys Chem B. 2002;106:3354–64.

    Article  CAS  Google Scholar 

  33. Xie Y, Chen Z, Su R, Li Y, Qi J, Wu W, et al. Preparation and optimization of amorphous ursodeoxycholic acid nano - suspensions by nanoprecipitation based on acid-base neutralization for enhanced dissolution. Curr Drug Deliv. 2017;14:483–91.

    Article  CAS  PubMed  Google Scholar 

  34. Singh A, Bharati A, Frederiks P, Verkinderen O, Goderis B, Cardinaels R, Van den Mooter G. Effect of compression on the molecular arrangement of itraconazole–soluplus solid dispersions: Induction of liquid crystals or exacerbation of phase separation?. Mol Pharm. 2016;13(6):1879–1893.

  35. Lan Y, Ali S, Langley N. Characterization of Soluplus by FTIR and Raman Spectroscopy. BASF Corporation, Pharma Ingredients and Services: Tarrytown, NY, USA. 2010.

  36. Jha DK, Shah DS, Amin PD. Effect of hypromellose acetate succinate substituents on miscibility behavior of spray-dried amorphous solid dispersions : Flory – Huggins parameter prediction and validation. Carbohydr Polym Technol Appl. Elsevier Ltd; 2021;2:100137.

  37. Zhu S, Yu R, Qian G, Deng L. A supersaturating drug delivery system to enhance the oral bioavailability of nilotinib. J Drug Deliv Sci Technol. 2022;68:103038.

    Article  CAS  Google Scholar 

  38. Herbrink M, Schellens JHM, Beijnen JH, Nuijen B. Improving the solubility of nilotinib through novel spray-dried solid dispersions. Int J Pharm. 2017;529:294–302.

    Article  CAS  PubMed  Google Scholar 

  39. Yang W, Johnston KP, Williams RO. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur J Pharm Biopharm. 2010;75:33–41.

    Article  CAS  PubMed  Google Scholar 

  40. Xue X, Chen G, Xu X, Wang J, Wang J, Ren L. A combined utilization of Plasdone-S630 and HPMCAS-HF in ziprasidone hydrochloride solid dispersion by hot-melt extrusion to enhance the oral bioavailability and no food effect. AAPS PharmSciTech. 2019;20:37.

    Article  PubMed  Google Scholar 

  41. Thombre AG, Herbig SM, Alderman JA. Improved ziprasidone formulations with enhanced bioavailability in the fasted state and a reduced food effect. Pharm Res. 2011;28:3159–70.

    Article  CAS  PubMed  Google Scholar 

  42. Murdande SB, Shah DA, Dave RH. Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals. J Pharm Sci. 2015;104:2094–102.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu AZX, Ho MD, Gemski CK, Chuang B, Liao M, Xia CQ. Utilizing in vitro dissolution-permeation chamber for the quantitative prediction of pH-dependent drug-drug interactions with acid-reducing agents : a comparison with physiologically based pharmacokinetic modeling. AAPS J. 2016;18:1512–23.

    Article  CAS  PubMed  Google Scholar 

  44. Hu S, Niu M, Hu F, Lu Y, Qi J, Yin Z, et al. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharm. 2013;441:693–700.

    Article  CAS  PubMed  Google Scholar 

  45. Klumpp L, Nagasekar K, McCullough O, Seybert A, Ashtikar M, Dressman J. Stability of biorelevant media under various storage conditions. Dissolution Technol. 2019;26:6–18.

    Article  CAS  Google Scholar 

  46. Wilson V, Lou X, Osterling DJ, Stolarik DF, Jenkins G, Gao W, et al. Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. J Control Release. 2018;292:172–82.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar R, Sirvi A, Kaur S, Samal SK, Roy S, Sangamwar AT. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of BCS class IV compound: intestinal permeability and pharmacokinetic evaluation. Eur J Pharm Sci. Elsevier B.V.; 2020;105466.

  48. Narula A, Sabra R, Li N. Mechanisms and extent of enhanced passive permeation by colloidal drug particles. Mol Pharmaceutics. American Chemical Society; 2022;19:3085–99.

  49. Xiang Q. Soluplus 1 micelles as a potential drug delivery system for reversal of resistant tumor. Biomed Pharmacother. 2015;69:388–95.

    Article  Google Scholar 

  50. Kou L, Sun R, Bhutia YD, Yao Q, Chen R. Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opin Drug Deliv. Taylor & Francis; 2018;15:869–79.

  51. Jia L, Wong H, Cerna C, Weitman SD. Effect of nanonization on absorption of 301029: ex vivo and in vivo pharmacokinetic correlations determined by liquid chromatography / mass spectrometry. AAPS Pharm Res. 2002;19:1091–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Reddy’s Laboratories (Hyderabad, India) for providing the gift samples. Support provided by the Director, NIPER S.A.S Nagar regarding the necessary facilities and infrastructure is also highly acknowledged. We also gratefully acknowledge lab members Karan Jadhav, Nandini Savardekar, and Manasi Pawar for their technical support during this project.

Author information

Authors and Affiliations

Authors

Contributions

Mahendra Chougule: conceptualisation, methodology, investigation, data curation, and validation. Arvind Sirvi: conceptualization, investigation, formal data analysis, and writing—review and editing. Vanshul Saini: manuscript writing (original draft), methodology, and data curation. Mahesh Kashyap: methodology (pharmacokinetic study). Abhay T. Sangamwar: conceptualisation, data review, project administration, supervision, and writing—review and editing.

Corresponding author

Correspondence to Abhay T. Sangamwar.

Ethics declarations

Ethics approval

All the animal handling, care, and experiments are carried out in compliance with ARRIVE guidelines and were carried out in accordance with the UK Animals (Scientific Procedures) Act, 1986, associated guidelines and EU Directive 2010/63/EU for animal experiments. The protocol mandatory to conduct pharmacokinetic study on laboratory animals was approved by Institutional Animal Ethics Committee (IAEC, NIPER S.A.S. Nagar, India) with the Protocol approval number: IAEC/22/ 07.

Consent to participate

Not applicable

Consent for publication

Abhay T. Sangamwar, corresponding author for this research article, on behalf of all the other respected authors (Mahendra Chougule, Arvind Sirvi, Vanshul Saini, and Mahesh Kashyap) hereby affirms that this article is in original form and does not violate any copyright. This research article has not been published earlier, and not under consideration in any other journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 172 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chougule, M., Sirvi, A., Saini, V. et al. Enhanced biopharmaceutical performance of brick dust molecule nilotinib via stabilized amorphous nanosuspension using a facile acid–base neutralization approach. Drug Deliv. and Transl. Res. 13, 2503–2519 (2023). https://doi.org/10.1007/s13346-023-01334-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01334-7

Keywords

Navigation