Skip to main content

Advertisement

Log in

Vaccines prevent reinduction of rheumatoid arthritis symptoms in collagen-induced arthritis mouse model

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Metabolic reprogramming of immune cells modulates their function and reduces the severity of autoimmune diseases. However, the long-term effects of the metabolically reprogrammed cells, specifically in the case of immune flare-ups, need to be examined. Herein, a re-induction rheumatoid arthritis (RA) mouse model was developed by injecting T-cells from RA mice into drug-treated mice to recapitulate the effects of T-cell-mediated inflammation and mimic immune flare-ups. Immune metabolic modulator paKG(PFK15 + bc2) microparticles (MPs) were shown to reduce clinical symptoms of RA in collagen-induced arthritis (CIA) mice. Upon re-induction, a significant delay in the reappearance of clinical symptoms in the paKG(PFK15 + bc2) microparticle treatment group was observed as compared to equal or higher doses of the clinically utilized U.S. Food and Drug Administration (FDA)-approved drug, Methotrexate (MTX). Furthermore, paKG(PFK15 + bc2) microparticle-treated mice were able to lower activated dendritic cells (DCs) and inflammatory T helper cell 1 (TH1) and increased activated, proliferating regulatory T-cells (Tregs) more effectively than MTX. The paKG(PFK15 + bc2) microparticles also led to a significant reduction in paw inflammation in mice as compared to MTX treatment. This study can pave the way for the development of flare-up mouse models and antigen-specific drug treatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data needed to evaluate the conclusions are present in the manuscript. Additional data related to this paper may be requested from the authors. The raw data required to reproduce these findings are available upon request from the authors. The processed data required to reproduce these findings are available upon request from the authors.

References

  1. Chen JF, et al. The impact of long-term biologics/target therapy on bone mineral density in rheumatoid arthritis: a propensity score-matched analysis. Rheumatology (Oxford). 2020;59(9):2471. https://doi.org/10.1093/RHEUMATOLOGY/KEZ655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wehr P, Purvis H, Law SC. Thomas R Dendritic cells, T cells and their interaction in rheumatoid arthritis. Clin Exp Immunol. 2019;196:1. https://doi.org/10.1111/CEI.13256.

    Article  Google Scholar 

  3. Khan S, Greenberg JD, Bhardwaj N. Dendritic cells as targets for therapy in rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(10):566–71. https://doi.org/10.1038/nrrheum.2009.185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021;44(2):172. https://doi.org/10.1016/J.BJ.2020.06.010.

    Article  CAS  PubMed  Google Scholar 

  5. Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16(10):458–68. https://doi.org/10.1016/j.molmed.2010.07.004.

    Article  CAS  PubMed  Google Scholar 

  6. Ponchel F, et al. Dysregulated lymphocyte proliferation and differentiation in patients with rheumatoid arthritis. Blood. 2002;100(13):4550–6. https://doi.org/10.1182/BLOOD-2002-03-0671.

    Article  CAS  PubMed  Google Scholar 

  7. Ponchel F, et al. T-cell subset abnormalities predict progression along the inflammatory arthritis disease continuum: implications for management. Sci Reports 2020;10(1):1–10. https://doi.org/10.1038/s41598-020-60314-w.

  8. Chang MH, et al. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell Rep. 2021;(37)4:109902. https://doi.org/10.1016/J.CELREP.2021.109902.

  9. Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020;9(4). https://doi.org/10.3390/CELLS9040880.

  10. Cope AP. T cells in rheumatoid arthritis. Arthritis Res Ther. 2008;10(Suppl 1):S1. https://doi.org/10.1186/AR2412.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kohem CL, Brezinschek RI, Wisbey H, Tortorella C, Lipsky PE, Oppenheimer-Marks N. Enrichment of differentiated CD45RBdim, CD27 – memory T cells in the peripheral blood, synovial fluid, and synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 1996;39(5):844–54. https://doi.org/10.1002/ART.1780390518.

    Article  CAS  PubMed  Google Scholar 

  12. Nagatani K, Sakashita E, Endo H, Minota S. A novel multi-biomarker combination predicting relapse from long-term remission after discontinuation of biological drugs in rheumatoid arthritis. Sci Reports. 2021;11(1):1–12. https://doi.org/10.1038/s41598-021-00357-9.

    Article  CAS  Google Scholar 

  13. Weyand CM, Goronzy JJ. T-cell-targeted therapies in rheumatoid arthritis. Nat Clin Pract Rheumatol. 2006;2(4):201–10. https://doi.org/10.1038/ncprheum0142.

    Article  CAS  PubMed  Google Scholar 

  14. Ma X, Xu S. TNF inhibitor therapy for rheumatoid arthritis. Biomed Reports. 2013;1(2):177. https://doi.org/10.3892/BR.2012.42.

    Article  CAS  Google Scholar 

  15. Xinqiang S, et al. Therapeutic efficacy of experimental rheumatoid arthritis with low-dose methotrexate by increasing partially CD4+CD25+ Treg cells and inducing Th1 to Th2 shift in both cells and cytokines. Biomed Pharmacother. 2010;64(7):463–71. https://doi.org/10.1016/J.BIOPHA.2010.01.007.

    Article  PubMed  Google Scholar 

  16. Lopez-Olivo MA, Siddhanamatha HR, Shea B, Tugwell P, Wells GA, Suarez-Almazor ME Methotrexate for treating rheumatoid arthritis Cochrane Database Syst Rev 2014;2014(6). https://doi.org/10.1002/14651858.CD000957.PUB2.

  17. Lucas CJ, Dimmitt SB, Martin JH. Optimising low-dose methotrexate for rheumatoid arthritis—a review. Br J Clin Pharmacol. 2019;85(10):2228–34. https://doi.org/10.1111/BCP.14057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Albrecht K, M ler-Ladner U. Side effects and management of side effects of methotrexate in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28(5 SUPPL. 61): S95–S101. [Online]. Available: https://www.clinexprheumatol.org/article.asp?a=4095%0Ahttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2010707610.

  19. Shinde CG, Venkatesh MP, Kumar TMP, Shivakumar HG. Methotrexate: a gold standard for treatment of rheumatoid arthritis. J Pain Palliat Care Pharmacother. 2014;28(4):351–8. https://doi.org/10.3109/15360288.2014.959238.

    Article  PubMed  Google Scholar 

  20. Zenuk C. Clearing up potential misconceptions about the treatment of rheumatoid arthritis and the use of methotrexate in combination therapy. Can Pharm J CPJ. 2018;151(2):94. https://doi.org/10.1177/1715163518756679.

    Article  Google Scholar 

  21. Inamdar S, et al. Biomaterial mediated simultaneous delivery of spermine and alpha ketoglutarate modulate metabolism and innate immune cell phenotype in sepsis mouse models. Biomaterials. 2022;293(August):2023. https://doi.org/10.1016/j.biomaterials.2022.121973.

    Article  CAS  Google Scholar 

  22. Mangal JL, et al. Inhibition of glycolysis in the presence of antigen generates suppressive antigen-specific responses and restrains rheumatoid arthritis in mice, 2021;277. Elsevier Ltd, 2021.

  23. Mangal JL, Basu N, Wu HJJ, Acharya AP. Immunometabolism: an emerging target for immunotherapies to treat rheumatoid arthritis. Immunometabolism. 2021. https://doi.org/10.20900/immunometab20210032.

  24. Teng F, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity. 2016;44:875–88. https://doi.org/10.1016/j.immuni.2016.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Price JE, Barth RF, Johnson CW, Staubus AE. Injection of cells and monoclonal antibodies into mice: comparison of tail vein and retroorbital routes. Proc Soc Exp Biol Med. 1984;177(2):347–53. https://doi.org/10.3181/00379727-177-41955.

    Article  CAS  PubMed  Google Scholar 

  26. Caplazi P, et al. Mouse models of rheumatoid arthritis. Vet Pathol. 2015;52(5):819–26. https://doi.org/10.1177/0300985815588612.

    Article  CAS  PubMed  Google Scholar 

  27. Li P, Schwarz EM. The TNF-α transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol. 2003;25(1):19–33. https://doi.org/10.1007/S00281-003-0125-3.

    Article  PubMed  Google Scholar 

  28. Ditzel HJ. The K/BxN mouse: a model of human inflammatory arthritis. Trends Mol Med. 2004;10(1):40–5. https://doi.org/10.1016/j.molmed.2003.11.004.

    Article  CAS  PubMed  Google Scholar 

  29. Nandakumar KS, Holmdahl R. Antibody-induced arthritis: disease mechanisms and genes involved at the effector phase of arthritis. Arthritis Res Ther. 2006;8(6)223. https://doi.org/10.1186/AR2089.

  30. Miyoshi M, Liu S. Collagen-induced arthritis models. Methods Mol Biol. 2018;1868:3–7. https://doi.org/10.1007/978-1-4939-8802-0_1.

    Article  CAS  PubMed  Google Scholar 

  31. Hagert C, et al. Chronic active arthritis driven by macrophages without involvement of T cells: a novel experimental model of rheumatoid arthritis. Arthritis Rheumatol. 2018;70(8):1343–53. https://doi.org/10.1002/art.40482.

    Article  CAS  PubMed  Google Scholar 

  32. Bajtner E, Nandakumar KS, Engström A, Holmdahl R. Chronic development of collagen-induced arthritis is associated with arthritogenic antibodies against specific epitopes on type II collagen. Arthritis Res Ther. 2005;7(5):R1148. https://doi.org/10.1186/AR1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Butz DE, Li G, Huebner SM, Cook ME. A mechanistic approach to understanding conjugated linoleic acid’s role in inflammation using murine models of rheumatoid arthritis. Am J Physiol Regul Integr Comp Physiol. 2007;293(2). https://doi.org/10.1152/AJPREGU.00005.2007/ASSET/IMAGES/LARGE/ZH60090759320005.JPEG.

  34. Tuncel J, et al. Self-reactive T cells induce and perpetuate chronic relapsing arthritis. Arthritis Res Ther. 2020;22(1). https://doi.org/10.1186/s13075-020-2104-7.

  35. Steel CD, Stephens AL, Hahto SM, Singletary SJ, Ciavarra RP. Comparison of the lateral tail vein and the retro-orbital venous sinus as routes of intravenous drug delivery in a transgenic mouse model. Lab Anim (NY). 2008;37(1):26–32. https://doi.org/10.1038/laban0108-26.

    Article  PubMed  Google Scholar 

  36. Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S. Retro-orbital injections in mice. Lab Anim (NY). 2011;40(5):155. https://doi.org/10.1038/LABAN0511-155.

    Article  PubMed  Google Scholar 

  37. Kang YK, et al. Humanizing NOD/SCID/IL-2Rγnull (NSG) mice using busulfan and retro-orbital injection of umbilical cord blood-derived CD34+ cells. Blood Res. 2016;51(1):31–6. https://doi.org/10.5045/br.2016.51.1.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet. 2017;389(10086):2338–48. https://doi.org/10.1016/S0140-6736(17)31491-5.

    Article  PubMed  Google Scholar 

  39. Zijlstra TR, Moens HB, Bukhari MA. The rheumatoid arthritis articular damage score: first steps in developing a clinical index of long term damage in RA. Ann Rheum Dis. 2002;61(1):20. https://doi.org/10.1136/ARD.61.1.20.

  40. Trikha R, et al. Active rheumatoid arthritis in a mouse model is not an independent risk factor for periprosthetic joint infection. PLoS One, 2021;16(8):e0250910. https://doi.org/10.1371/JOURNAL.PONE.0250910.

  41. van Delft MAM, Huizinga TWJ. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 2020;110:102392. https://doi.org/10.1016/J.JAUT.2019.102392.

  42. Pérez-Martínez PI, Hernández VG, Rodríguez-Espinosa O, Arce-Paredes P, Rojas-Espinosa O. Differential anti-inflammatory effects of three purified omega unsaturated fatty acids on collagen-induced arthritis in mouse. Mod Res Inflamm. 2016;5:31–44. https://doi.org/10.4236/mri.2016.53004.

    Article  CAS  Google Scholar 

  43. Mangal JL, et al. Metabolite releasing polymers control dendritic cell function by modulating their energy metabolism. J Mater Chem B. 2020;8(24):5195–203. https://doi.org/10.1039/d0tb00790k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bolon B, et al. Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. J Biomed Biotechnol. 2011;2011. https://doi.org/10.1155/2011/569068.

  45. Brand DD. Rodent models of rheumatoid arthritis the need for rodent models of arthritis. Comp Med. 2005;55(2):114–22.

    CAS  PubMed  Google Scholar 

  46. Zhang Z, Cao Y, Yuan Q, Zhang A, Zhang K, Wang Z. Shexiang-Wulong pills attenuate rheumatoid arthritis by alleviating inflammation in a mouse model of collagen-induced arthritis. Evidence-based Complement Altern Med. 2019;2019. https://doi.org/10.1155/2019/5308405.

  47. Choy EH, Kavanaugh AF, Jones SA. The problem of choice: current biologic agents and future prospects in RA. Nat Rev Rheumatol. 2013;9(3):154–63. https://doi.org/10.1038/nrrheum.2013.8.

    Article  CAS  PubMed  Google Scholar 

  48. Rubbert-Roth A, Szabó MZ, Kedves M, Nagy G, Atzeni F, Sarzi-Puttini P. Failure of anti-TNF treatment in patients with rheumatoid arthritis: the pros and cons of the early use of alternative biological agents. Autoimmun Rev. 2019;18(12).

  49. Atzeni F, Sarzi-Puttini P. The therapeutic journey of biologic agents: there will be an end?. Pharmacol Res. 2019;147. https://doi.org/10.1016/J.PHRS.2019.104340.

  50. Zamri F, de Vries TJ. Use of TNF inhibitors in rheumatoid arthritis and implications for the periodontal status: for the benefit of both? Front Immunol. 2020;11:2686. https://doi.org/10.3389/FIMMU.2020.591365/BIBTEX.

    Article  Google Scholar 

  51. Zintzaras E, Voulgarelis M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med. 2005;165(20):2337–44. https://doi.org/10.1001/ARCHINTE.165.20.2337.

    Article  PubMed  Google Scholar 

  52. Conigliaro P, et al. Challenges in the treatment of rheumatoid arthritis. Autoimmun Rev. 2019;18(7):706–13. https://doi.org/10.1016/j.autrev.2019.05.007.

    Article  PubMed  Google Scholar 

  53. O’Dell JR. Treating rheumatoid arthritis early: a window of opportunity? Arthritis Rheum. 2002;46(2):283–5. https://doi.org/10.1002/ART.10092.

    Article  PubMed  Google Scholar 

  54. Jekic B, Maksimovic N, Damnjanovic T. Methotrexate pharmacogenetics in the treatment of rheumatoid arthritis. Pharmacogenomics. 2019;20(17):1235–45. https://doi.org/10.2217/pgs-2019-0121.

    Article  CAS  PubMed  Google Scholar 

  55. Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine. 2019;86(3):301. https://doi.org/10.1016/J.JBSPIN.2018.07.004.

    Article  CAS  PubMed  Google Scholar 

  56. Cronstein BN, Aune TM. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol. 2020;16(3):145–54. https://doi.org/10.1038/s41584-020-0373-9.

    Article  CAS  PubMed  Google Scholar 

  57. Elia I. Integrating metabolic engineering and immunotherapy. Curr Opin Syst Biol. 2021;28:100361. https://doi.org/10.1016/J.COISB.2021.100361.

  58. Qiu J, Wu B, Goodman SB, Berry GJ, Goronzy JJ, Weyand CM. Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis. Front Immunol. 2021;12. https://doi.org/10.3389/FIMMU.2021.652771.

  59. Garcia-Carbonell R, et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol (Hoboken, N.J.). 2016;68(7):1614–26. https://doi.org/10.1002/ART.39608.

  60. Matzelle MM, Babensee JE. Humoral immune responses to model antigen co-delivered with biomaterials used in tissue engineering. Biomaterials. 2004;25(2):295–304.

    Article  CAS  PubMed  Google Scholar 

  61. Choe SW, Acharya AP, Keselowsky BG, Sorg BS. Intravital microscopy imaging of macrophage localization to immunogenic particles and co-localized tissue oxygen saturation. Acta Biomater. 2010;6(9):3491–8. https://doi.org/10.1016/j.actbio.2010.03.006.

    Article  CAS  PubMed  Google Scholar 

  62. Acharya AP, et al. A cell-based microarray to investigate combinatorial effects of microparticle-encapsulated adjuvants on dendritic cell activation. J Mater Chem B Mater Biol Med. 2016;4(9):1672. https://doi.org/10.1039/C5TB01754H.

    Article  CAS  PubMed  Google Scholar 

  63. Yamada H, et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67(9):1299–304. https://doi.org/10.1136/ARD.2007.080341.

    Article  CAS  PubMed  Google Scholar 

  64. Li S, et al. Effector T helper cell populations are elevated in the bone marrow of rheumatoid arthritis patients and correlate with disease severity. Sci Reports 2017 71. 2017;7(1)1–11. https://doi.org/10.1038/s41598-017-05014-8.

  65. Luo P, et al. Immunomodulatory role of T helper cells in rheumatoid arthritis. Bone Jt res. 2022;11(7):426–38. https://doi.org/10.1302/2046-3758.117.BJR-2021-0594.R1.

    Article  Google Scholar 

  66. Isaacs JD. Therapeutic T-cell manipulation in rheumatoid arthritis: past, present and future. Rheumatology. 2008;47(10):1461–8. https://doi.org/10.1093/RHEUMATOLOGY/KEN163.

    Article  CAS  PubMed  Google Scholar 

  67. Li J, Hsu HC, Mountz JD. The dynamic duo–inflammatory M1 macrophages and Th17 cells in rheumatic diseases. J Orthop Rheumatol. 2013;1(1)4. https://doi.org/10.13188/2334-2846.1000002.

Download references

Acknowledgements

The authors would also like to acknowledge the Flow Cytometry Core, the FEI at Erying Materials Center, and the Department of Animal Care and Technologies at Arizona State University.

Funding

The authors would like to acknowledge funding sources to APA that supported this work — NIH R01AR078343 and NIH R01AI155907, NIH 1R01GM144966-01 and NSF award# 2145877.

Author information

Authors and Affiliations

Authors

Contributions

Abhirami Thumsi designed and performed the experiments, analyzed data, and wrote the manuscript. Srivatsan J. Swaminathan and Abhirami P. Suresh performed experiments. Abhinav P. Acharya helped design experiments, procured funding, and wrote the manuscript.

Corresponding author

Correspondence to Abhinav P. Acharya.

Ethics declarations

Ethics approval and consent to participate

All authors participated in preparing this manuscript.

Consent for publication

The authors provide consent for publication.

Competing interests

Abhinav P. Acharya is affiliated with a start-up company, Immunometabolix, LLC and VaderBio, LLC. There are no other conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thumsi, A., Swaminathan, S.J., Mangal, J.L. et al. Vaccines prevent reinduction of rheumatoid arthritis symptoms in collagen-induced arthritis mouse model. Drug Deliv. and Transl. Res. 13, 1925–1935 (2023). https://doi.org/10.1007/s13346-023-01333-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01333-8

Keywords

Navigation