Skip to main content

Advertisement

Log in

Development and evaluation of novel krill oil-based clomiphene microemulsion as a therapeutic strategy for PCOS treatment

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is frequently diagnosed hormonal disorder with reproductive and metabolic complications. The most common symptoms include cyst in ovaries, anovulation, insulin resistance, and obesity. Clomiphene citrate, an ovulating agent, is the first-line drug used to treat PCOS. We hypothesized that clomiphene citrate, by stimulating ovarian function, with krill oil used as an oil phase to improve solubility, by addressing PCOS-associated symptoms might be effective in PCOS. Hence, our goal was to target hormonal imbalance along with PCOS-associated symptoms using a single formulation. The concentration of water (X1), oil (X2), and Smix (surfactant-cosurfactant mixture) (X3) were selected as independent variables, in a simplex lattice design, from microemulsion area derived from a pseuodoternary phase diagram while the globule size (Y1) was selected as a dependent parameter. The optimized microemulsion showed good sphericity having 41 nm globule size, 0.32 poly dispersibility index and + 31 mV zeta potential. The optimized microemulsion was further evaluated in-vivo using letrozole-induced PCOS rats. Formulation treated group reversed the effect of letrozole on body weight and estrus cycle in comparison to the disease control group (p < 0.001). The formulation was also effective in reducing insulin resistance, cholesterol and serum testosterone level (p < 0.001). The in vivo results were supported by histopathological studies where the formulation-treated group showed a marked decrease in the number of cystic follicles and a remarkable increase in the number of growing follicles at variable stages, similar to the normal control group. Thus, the results confirmed that novel krill oil-based clomiphene microemulsion may become a promising therapeutic choice for the treatment of PCOS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are reported in this article (and its Supplementary information files) and the datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aversa A, La Vignera S, Rago R, Gambineri A, Nappi RE, Calogero AE, Ferlin A. Fundamental concepts and novel aspects of polycystic ovarian syndrome: expert consensus resolutions. Front Endocrinol (Lausanne). 2020;11(11):516. https://doi.org/10.3389/fendo.2020.00516.PMID:32849300;PMCID:PMC7431619.

    Article  PubMed  Google Scholar 

  2. Omran E, El-Sharkawy M, El-Mazny A, Hammam M, Ramadan W, Latif D, et al. Effect of clomiphene citrate on uterine hemodynamics in women with unexplained infertility. Int J Women’s Health. 2018;10:147–52. https://doi.org/10.2147/IJWH.S155335.

    Article  Google Scholar 

  3. Dennett CC, Simon J. The role of polycystic ovary syndrome in reproductive and metabolic health: overview and approaches for treatment. Diabetes Spectr. 2015;28(2):116–20. https://doi.org/10.2337/diaspect.28.2.116.PMID:25987810;PMCID:PMC4433074.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fiedler K, Ludwig M. Use of clomiphene citrate in in vitro fertilization (IVF) and IVF/intracytoplasmic sperm injection cycles. Fertil Steril. 2004;80:1521–3. https://doi.org/10.1016/S0015-0282(03)02208-8.

    Article  Google Scholar 

  5. Trabert B, Lamb EJ, Scoccia B, Moghissi KS, Westhoff CL, Niwa S, Brinton LA. Ovulation-inducing drugs and ovarian cancer risk: results from an extended follow-up of a large United States infertility cohort. Fertil Steril. 2013;100:1660–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ajdary M, Keyhanfar F, Aflatoonian R, Amani A, Amjadi F, Zandieh Z, Mehdizadeh M. Design and evaluation of a novel nanodrug delivery system for reducing the side effects of clomiphene citrate on endometrium. Daru. 2020;28(2):423–432. https://doi.org/10.1007/s40199-019-00310-2. Epub 2020 Jun 2. PMID: 32483681; PMCID: PMC7704853.

  7. Maheshwari A, Saraswat H, Upadhyay SK. Structural insights into the inclusion complexes between clomiphene citrate and β-cyclodextrin: the mechanism of preferential isomeric selection. Chirality. 2017;29:451–7. https://doi.org/10.1002/chir.22712.

    Article  CAS  PubMed  Google Scholar 

  8. Biju P. Preparation and assessment of clomiphene citrate liquisolid tablets for solubility enhancement. Asian J Pharm (AJP). 2021;15(2). https://doi.org/10.22377/ajp.v15i2.4077.

  9. Patel MR, Patel RB, Bhatt KK, Patel BG, Gaikwad RV. Paliperidone microemulsion for nose-to-brain targeted drug delivery system: pharmacodynamic and pharmacokinetic evaluation. Drug Delivery. 2016;23(1):346–54. https://doi.org/10.3109/10717544.2014.914602.

    Article  CAS  PubMed  Google Scholar 

  10. Porecha S, Shah T, Jogani V, et al. Microemulsion based intranasal delivery system for treatment of insomnia. Drug Deliv. 2009;16:128–34.

    Article  CAS  PubMed  Google Scholar 

  11. Shinde et al. Design and evaluation of microemulsion gel system of nadifloxacin. Indian J Pharm Sci. 2012;74(3):237–47. https://doi.org/10.4103/0250-474X.106066. PMID: 23439454; PMCID: PMC3574534.

  12. Lin H, Gebhardt M, Bian S, Kwon KA, Shim CK, Chung SJ, Kim DD. Enhancing effect of surfactants on fexofenadine.HCl transport across the human nasal epithelial cell monolayer. Int J Pharm. 2007;330(1–2):23–31. https://doi.org/10.1016/j.ijpharm.2006.08.043. Epub 2006 Sep 1. PMID: 16997520.N.

  13. Tiwari N, Sivakumar A, Mukherjee A, Chandrasekaran N. Enhanced antifungal activity of Ketoconazole using rose oil based novel microemulsion formulation. J Drug Delivery Sci Technol. 2018. https://doi.org/10.1016/j.jddst.2018.07.007.

    Article  Google Scholar 

  14. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med. 2014;2014: 651593.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khazdair M. The protective effects of Nigella sativa and its constituents on induced neurotoxicity. J Toxicol. 2015. https://doi.org/10.1155/2015/841823.

  16. Vigan M. Essential oils: renewal of interest and toxicity. Eur J Dermatol. 2010;20(6):685–92.

    PubMed  Google Scholar 

  17. Ma S, Chen F, Ye X, Dong Y, Xue Y, Xu H, Zhang W, Song S, Ai L, Zhang N, Pan W. Intravenous microemulsion of docetaxel containing an anti-tumor synergistic ingredient (Brucea javanica oil): formulation and pharmacokinetics. Int J Nanomedicine. 2013;8:4045–52. https://doi.org/10.2147/IJN.S47956. Epub 2013 Oct 25. PMID: 24179332; PMCID: PMC3810894.

  18. Scomoroscenco C, Teodorescu M, Burlacu SG, Gîfu IC, Mihaescu CI, Petcu C, Raducan A, Oancea P, Cinteza LO. Synergistic antioxidant activity and enhanced stability of curcumin encapsulated in vegetal oil-based microemulsion and gel microemulsions. Antioxidants. 2022;11:854. https://doi.org/10.3390/antiox11050854.

  19. Di Marzo V, Griinari M, Carta G, Murru E, Ligresti A, Cordeddu L, Giordano E, Bisogno T, Collu M, Batetta B. Dietary krill oil increases docosahexaenoic acid and reduces 2-arachidonoylglycerol but not N-acylethanolamine levels in the brain of obese Zucker rats. Int Dairy J. 2010;20:231–5. https://doi.org/10.1016/j.idairyj.2009.11.015.[CrossRef][GoogleScholar].

    Article  Google Scholar 

  20. Kim M-A, Jung H-R, Lee Y-B, Jeon B-S, Kim S-B. Monthly variations in the nutritional composition of antarctic krill Euphausia superba. Fisheries and Aquatic Sciences. 2014;17(4):409–19. https://doi.org/10.5657/FAS.2014.040.

    Article  Google Scholar 

  21. Yang K, Zeng L, Bao T, Ge J. Effectiveness of Omega-3 fatty acid for polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2018;16(1):27. https://doi.org/10.1186/s12958-018-0346-x.PMID:29580250;PMCID:PMC5870911.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Frank C, Wim D. Nutraceutical treatment of patients with polycystic ovary syndrome. Open Journal of Obstetrics and Gynecology. 2021;11:1117–24. https://doi.org/10.4236/ojog.2021.119105.

    Article  CAS  Google Scholar 

  23. Komal F, Khan MK, Imran M, et al. Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model. J Transl Med. 2020;18:349. https://doi.org/10.1186/s12967-020-02519-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shah BM, Misra M, Shishoo CJ, Padh H. Nose to brain microemulsion-based drug delivery system of rivastigmine: formulation and ex-vivo characterization. Drug Delivery. 2015;22(7):918–30. https://doi.org/10.3109/10717544.2013.878857.

    Article  CAS  PubMed  Google Scholar 

  25. Ma H, Quan X, Chen X, Dong Y. [Flying needling therapy combined with clomiphene for ovulation failure in polycystic ovary syndrome:a randomized controlled trial]. Zhongguo Zhen Jiu. 2016;36(11):1161–1165. Chinese. https://doi.org/10.13703/j.0255-2930.2016.11.015. PMID: 29231300.

  26. Shinde U, Pokharkar S, Modani S. Design and evaluation of microemulsion gel system of nadifloxacin. Indian J Pharm Sci. 2012;74(3):237–47. https://doi.org/10.4103/0250-474X.106066.PMID:23439454;PMCID:PMC3574534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patel V, Kukadiya H, Mashru R, Surti N, Mandal S. Development of microemulsion for solubility enhancement of clopidogrel. Iran J Pharm Res. 2010;9(4):327–34. PMID: 24381597; PMCID: PMC3870056.

  28. Dhaval M, Devani J, Parmar R, Soniwala MM, Chavda J. Formulation, and optimization of microemulsion based sparfloxacin in-situ gel for ocular delivery: in vitro and ex vivo characterization. J Drug Deliv Sci Technol. 2019;101373. https://doi.org/10.1016/j.jddst.2019.101373.

  29. Kafali H, Iriadam M, Ozardalı I, Demir N. Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res. 2004;35(2):103–8.

    Article  CAS  PubMed  Google Scholar 

  30. Yeral I, Sayan CD, Karaca G, Simsek Y, Sagsoz N, Ozkan ZS, Atasoy P, Sahin Y, Neselioglu S, Erel O. What is the protective effect of krill oil on rat ovary against ischemia-reperfusion injury? J Obstet Gynaecol Res. 2019;45(3):592–9. https://doi.org/10.1111/jog.13876. (Epub 2018 Nov 28 PMID: 30484932).

    Article  CAS  PubMed  Google Scholar 

  31. Ndeingang EC, Defo Deeh PB, Watcho P, Kamanyi A. Phyllanthus muellerianus (Euphorbiaceae) restores ovarian functions in letrozole-induced polycystic ovarian syndrome in rats. Evid Based Complement Alternat Med. 2019;2019:2965821.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cora MC, Kooistra L, Travlos G. Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol. 2015;43(6):776–93.

    Article  CAS  PubMed  Google Scholar 

  33. Fofié CK, Nguelefack-Mbuyo EP, Tsabang N, Kamanyi A, Nguelefack TB. Hypoglycemic properties of the aqueous extract from the stem bark of Ceiba pentandra in dexamethasone-induced insulin resistant rats. Evidence-Based Complementary and Alternative Medicine. 2018;2018:4234981.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Banni S, Carta G, Murru E, Cordeddu L, Giordano E, Sirigu AR, Berge K, Vik H, Maki KC, Di Marzo V, Griinari M. Krill oil significantly decreases 2-arachidonoylglycerol plasma levels in obese subjects. Nutr Metab (Lond). 2011;8(1):7. https://doi.org/10.1186/1743-7075-8-7.PMID:21276269;PMCID:PMC3048484.

    Article  CAS  PubMed  Google Scholar 

  35. Mohammadi, et al. Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac J Clin Nutr. 2012;21:511–8.

    CAS  PubMed  Google Scholar 

  36. Porras M, Solans C, González C, Gutiérrez J. Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids and Surfaces A-physicochemical and Engineering Aspects - COLLOID SURFACE A. 2008;324:181–8. https://doi.org/10.1016/j.colsurfa.2008.04.012.

    Article  CAS  Google Scholar 

  37. Huibers PDT, Shah DO, Pillai V, Shah DO. Dynamic Properties of Interfaces and Association Structures, AOCS Press, Champaign, IL, 1996.

  38. Milić J, Čalija B, Sanela M. Đorđević, Chapter 4 - Diversity and Functionality of Excipients for Micro/Nanosized Drug Carriers, Editor(s): Bojan Čalija, Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs, Academic Press. 2017;95–132, ISBN 9780128040171. https://doi.org/10.1016/B978-0-12-804017-1.00004-2.

  39. Duangjit S, Mehr LM, Kumpugdee-Vollrath M, Ngawhirunpat T. Role of simplex lattice statistical design in the formulation and optimization of microemulsions for transdermal delivery. Biol Pharm Bull. 2014;37(12):1948–57.

    Article  CAS  PubMed  Google Scholar 

  40. Ita K. Chapter 6 - Microemulsions, Editor(s): Kevin Ita, Transdermal Drug Delivery,Academic Press, 2020;97–122, ISBN 9780128225509.

  41. Li P, Ghosh A, Wagner R, Krill S, Joshi Y, Serajuddin A. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int J Pharm. 2005;288:27–34.

    Article  CAS  PubMed  Google Scholar 

  42. Krogdahl A, Ahlstrom O, Burri L, Nordrum S, Dolan L, Bakke AM, Penn MH. Antarctic krill meal as an alternative protein source in pet foods evaluated in mink (Neovison vison). II Growth Open Access Animal Physiology. 2015;7:43–56. https://doi.org/10.2147/OAAP.S72431.

    Google Scholar 

  43. Poteat WL. The effect of clomiphene citrate and estradiol on body weight, vaginal cornification, and uterine weight after chronic treatment of ovariectomized rats. Experientia. 1977;33(8):1080–2.

    Article  CAS  PubMed  Google Scholar 

  44. Tarttelin MF, Gorski RA. Variations in food and water intake in the normal and acyclic female rat. Physiol Behav. 1971;7(6):847–52.

    Article  CAS  PubMed  Google Scholar 

  45. Yang G, Lee J, Lee S, Kwak D, Choe W, Kang I, et al. Krill oil supplementation improves dyslipidemia and lowers body weight in mice fed a high-fat diet through activation of AMPActivated protein kinase. J Med Food. 2016;19(12):1120–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kelley ST, Skarra DV, Rivera AJ, Thackray VG. The gut microbiome is altered in a letrozoleinduced mouse model of polycystic ovary syndrome. PLoS ONE. 2016;11(1): e0146509.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ndeingang EC, Defo Deeh PB, Watcho P, Kamanyi A. Phyllanthus muellerianus (Euphorbiaceae) restores ovarian functions in letrozole-induced polycystic ovarian syndrome in rats. Evidence-Based Complementary and Alternative Medicine. 2019;2019:2965821.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ferramosca A, Conte A, Burri L, Berge K, De Nuccio F, Giudetti AM, et al. A Krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. PLoS ONE. 2012;7(6): e38797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun J, Jin C, Wu H, Zhao J, Cui Y, Liu H, et al. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats. PLoS ONE. 2013;8(11): e79382.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khani B, Mardanian F, Fesharaki SJ. Omega-3 supplementation effects on polycystic ovary syndrome symptoms and metabolic syndrome. J Res Med Sci. 2017;22:64.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fedor D, Kelley DS. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care. 2009;12(2):138–46.

    Article  CAS  PubMed  Google Scholar 

  52. Ferramosca A, Savy V, Conte L, Zara V. Dietary combination of conjugated linoleic acid (CLA) and pine nut oil prevents CLA-induced fatty liver in mice. J Agric Food Chem. 2008;56(17):8148–58.

    Article  CAS  PubMed  Google Scholar 

  53. Gagnon C, Baillargeon J-P. Suitability of recommended limits for fasting glucose tests in women with polycystic ovary syndrome. Can Med Assoc J. 2007;176(7):933.

    Article  Google Scholar 

  54. Kauffman AS, Thackray VG, Ryan GE, Tolson KP, Glidewell-Kenney CA, Semaan SJ, et al. A novel letrozole model recapitulates both the reproductive and metabolic phenotypes of polycystic ovary syndrome in female mice. Biol Reprod. 2015;93(3):69.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Skarra DV, Hernández-Carretero A, Rivera AJ, Anvar AR, Thackray VG. Hyperandrogenemia induced by letrozole treatment of pubertal female mice results in hyperinsulinemia prior to weight gain and insulin resistance. Endocrinology. 2017;158(9):2988–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tianhe L, Zhang T, Cui T, Yang Y, Liu R, Chen Y, et al. Involvement of endogenous testosterone in hepatic steatosis in women with polycystic ovarian syndrome. J Steroid Biochem Mol Biol. 2020;204: 105752.

    Article  Google Scholar 

  57. Anderson LA, McTernan PG, Harte AL, Barnett AH, Kumar S. The regulation of HSL and LPL expression by DHT and flutamide in human subcutaneous adipose tissue. Diabetes Obes Metab. 2002;4(3):209–13.

    Article  CAS  PubMed  Google Scholar 

  58. Faulds G, Rydén M, Ek I, Wahrenberg H, Arner P. Mechanisms behind lipolytic catecholamine resistance of subcutaneous fat cells in the polycystic ovarian syndrome. J Clin Endocrinol Metab. 2003;88(5):2269–73.

    Article  CAS  PubMed  Google Scholar 

  59. Al-Diwan M, Al-Attabi M. Protective role of clomiphene citrate from the biochemical effects of atrazine exposure in adult male rats. Bas J Vet Res. 2012;11(2):11.

  60. Garcia J, Jones GS, Wentz AC. The use of clomiphene citrate. Fertil Steril. 1977;28(7):707–17. https://doi.org/10.1016/s0015-0282(16)42670-1. (PMID: 872951).

    Article  CAS  PubMed  Google Scholar 

  61. Yaşar HY, Ertuğrul O. Clomiphene citrate-induced severe hypertriglyceridemia. Fertil Steril. 2009;92(1):396.e7-8.

    Article  PubMed  Google Scholar 

  62. Al-Amoudi W. Biochemical and histological effects of clomiphene citrate on liver of female albino rat. J Am Sci. 2012;8.

  63. Lundeen SG, Carver JM, McKean ML, Winneker RC. Characterization of the ovariectomized rat model for the evaluation of estrogen effects on plasma cholesterol levels. Endocrinology. 1997;138(4):1552–8.

    Article  CAS  PubMed  Google Scholar 

  64. Hillier SG, Reichert LE Jr, Van Hall EV. Control of preovulatory follicular estrogen biosynthesis in the human ovary. J Clin Endocrinol Metab. 1981;52(5):847–56.

    Article  CAS  PubMed  Google Scholar 

  65. Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr Rev. 2017;39(1):1–20.

    Article  PubMed Central  Google Scholar 

  66. Nadjarzadeh A, Dehghani Firouzabadi R, Vaziri N, Daneshbodi H, Lotfi MH, Mozaffari KH. The effect of omega-3 supplementation on androgen profile and menstrual status in women with polycystic ovary syndrome: a randomized clinical trial. Iran J Reprod Med. 2013;11(8):665–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Phelan N, O’Connor A, Kyaw Tun T, Correia N, Boran G, Roche HM, et al. Hormonal and metabolic effects of polyunsaturated fatty acids in young women with polycystic ovary syndrome: results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial. Am J Clin Nutr. 2011;93(3):652–62.

    Article  CAS  PubMed  Google Scholar 

  68. Wang X, Walsh LP, Reinhart AJ, Stocco DM. The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression*. J Biol Chem. 2000;275(26):20204–9.

    Article  CAS  PubMed  Google Scholar 

  69. Zhuang L-Z, Adashi EY, Hsueh AJW. Direct enhancement of gonadotropinstimulated ovarian estrogen biosynthesis by estrogen and clomiphene citrate. Endocrinology. 1982;110(6):2219–21.

Download references

Acknowledgements

The authors would like to acknowledge the financial support and animal house facility provided by L.J.University, Ahmedabad, India. The authors would also like to acknowledge Gattefose, Mumbai, India, for providing various gift samples of surfactants and co-surfactants.

Author information

Authors and Affiliations

Authors

Contributions

Darshita Panchal: methodology and validation; Tosha Pandya: writing original draft and editing; Vijay Kevlani: animal study and editing; Dr. Shreeraj Shah: funding resources and editing; Dr. Sheetal Acharya: conceptualization, resources, supervision and project administration.

Corresponding author

Correspondence to Sheetal Acharya.

Ethics declarations

Ethics approval and consent to participate

The experiments reported herein did not involve any human or animal subjects. The experiments performed herein comply with the current laws of the country.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchal, D., Pandya, T., Kevlani, V. et al. Development and evaluation of novel krill oil-based clomiphene microemulsion as a therapeutic strategy for PCOS treatment. Drug Deliv. and Transl. Res. 13, 2254–2271 (2023). https://doi.org/10.1007/s13346-023-01304-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01304-z

Keywords

Navigation