Skip to main content

Advertisement

Log in

Targeting reactive astrocytes by pH-responsive ligand-bonded polymeric nanoparticles in spinal cord injury

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In spinal cord injuries, axonal regeneration decreases with the activation of astrocytes followed by glial scar formation. Targeting reactive astrocytes has been recently performed by unsafe viral vectors to inhibit gliosis. In the current study, biocompatible polymeric nanoparticles were selected as an alternative for viruses to target reactive astrocytes for further drug/gene delivery applications. Lipopolysaccharide-bonded chitosan-quantum dots/poly acrylic acid nanoparticles were prepared by ionic gelation method to target reactive astrocytes both in vitro and in spinal cord-injured rats. Owing to their biocompatibility and pH-responsive behavior, chitosan and poly acrylic acid were the main components of nanoparticles. Nanoparticles were then chemically labeled with quantum dots to track the cell uptake and electrostatically interacted with lipopolysaccharide as a targeting ligand. In vitro and in vivo studies were performed in triplicate and all data were expressed as the mean ± the standard error of the mean. Smart nanoparticles with optimum size (61.9 nm) and surface charge (+ 12.5 mV) successfully targeted primary reactive astrocytes extracted from the rat cerebral cortex. In vitro studies represented high cell viability (96%) in the exposure of biocompatible nanoparticles. The pH-responsive behavior of nanoparticles was proved by their internalization into the cell’s nuclei due to the swelling and endosomal escape of nanoparticles in acidic pH. In vivo studies demonstrated higher transfection of nanoparticles into reactive astrocytes compared to the neurons. pH-responsive ligand-bonded chitosan-based nanoparticles are good alternatives for viral vectors in targeted delivery applications for the treatment of spinal cord injuries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32:638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7:617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci. 2015;9:278.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vismara I, Papa S, Veneruso V, Mauri E, Mariani A, De Paola M, Affatato R, Rossetti A, Sponchioni M, Moscatelli D, Sacchetti A, Rossi F, Forloni G, Veglianese P. Selective modulation of A1 astrocytes by drug-loaded nano-structured gel in spinal cord injury. ACS Nano. 2019;14:360–71.

    Article  PubMed  Google Scholar 

  5. Su Z, Niu W, Liu ML, Zou Y, Zhang CL. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun. 2014;5:1–15.

    Article  Google Scholar 

  6. Huang Y, Tan S. Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neurosci Bull. 2015;31:357–67.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy 425 of SCID-X1. J Clin Investig. 2008;118:3132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Riviere CD, Douar AM. Long-term expression and repeated administration of AAV type 1, 2, and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther. 2006;13:1300–8.

    Article  CAS  PubMed  Google Scholar 

  9. Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev. 2011;40:233–45.

    Article  CAS  PubMed  Google Scholar 

  10. Rauch J, Kolch W, Laurent S, Mahmoudi M. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem Rev. 2013;113:3391–406.

    Article  CAS  PubMed  Google Scholar 

  11. Salatin S, Maleki Dizaj S, Yari KA. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015;39:881–90.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34:3647–57.

    Article  CAS  PubMed  Google Scholar 

  13. Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, Kreuter J, Gelperina S, Begley D, Alyautdin RN. Brain targeting of nerve growth factor using poly (butyl cyanoacrylate) nanoparticles. J Drug Target. 2009;17:564–74.

    Article  CAS  PubMed  Google Scholar 

  14. Huang M, Zhang SF, Lü S, Qi T, Yan J, Gao C, Liu M, Li T, Ji Y. Synthesis of mesoporous silica/polyglutamic acid peptide dendrimer with dual targeting and its application in dissolving thrombus. J Biomed Mater Res A. 2019;107:1824–31.

    CAS  PubMed  Google Scholar 

  15. Ren H, Han M, Zhou J, Zheng ZF, Lu P, Wang JJ, Wang JQ, Mao QJ, Gao JQ, Ouyang HW. Repair of spinal cord injury by inhibition of astrocyte growth and inflammatory factor synthesis through local delivery of flavopiridol in PLGA nanoparticles. Biomaterials. 2014;35:6585–94.

    Article  CAS  PubMed  Google Scholar 

  16. Ouyang Q, Meng Y, Zhou W, Tong J, Cheng Z, Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease. J Drug Target. 2022;30:61–81.

    Article  CAS  PubMed  Google Scholar 

  17. Tığlı Aydın RS, Kaynak G, Gümüşderelioğlu M. Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells. J Biomed Mater Res A. 2016;104:455–64.

    Article  PubMed  Google Scholar 

  18. Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci. 2012;32:16129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Colin A, Faideau M, Dufour N, Auregan G, Hassig R, Andrieu T, Brouillet E, Hantraye P, Bonvento G, Déglon N. Engineered lentiviral vector targeting astrocytes in vivo. Glia. 2009;57:667–79.

    Article  PubMed  Google Scholar 

  20. Cao S, Jiang Y, Levy CN, Hughes SM, Zhang H, Hladik F, Woodrow KA. Optimization and comparison of CD4-targeting lipid–polymer hybrid nanoparticles using different binding ligands. J Biomed Mater Res A. 2018;106:1177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Kozielski K, Cheng YH, Liu H, Zamboni CG, Green J, Mao HQ. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes. Biomater Sci. 2016;4:1100–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu J, Al-Bayati K, Ho EA. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv Transl Res. 2017;7:497–506.

    Article  CAS  PubMed  Google Scholar 

  23. Nance E, Porambo M, Zhang F, Mishra MK, Buelow M, Getzenberg R, Johnston M, Kannan RM, Fatemi A, Kannan S. Systemic dendrimer-drug treatment of ischemia-induced neonatal white matter injury. J Control Release. 2015;214:112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Proulx J, Joshi C, Vijayaraghavalu S, Saraswathy M, Labhasetwar V, Ghorpade A, Borgmann K. Arginine-modified polymers facilitate poly (lactide-co-glycolide)-based nanoparticle gene delivery to primary human astrocytes. Int J Nanomed. 2020;15:3639.

    Article  CAS  Google Scholar 

  25. Francis R, Kumar DS. Biomedical applications of polymeric materials and composites. John Wiley & Sons. 2016;1–12.

  26. Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012;64:701–5.

    Article  CAS  PubMed  Google Scholar 

  27. You JO, Almeda D, Ye GJ, Auguste DT. Bioresponsive matrices in drug delivery. J Biol Eng. 2010;4:1–13.

    Article  Google Scholar 

  28. Wu D, Delair T. Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydr Polym. 2015;119:149–58.

    Article  CAS  PubMed  Google Scholar 

  29. Kiang T, Bright C, Cheung CY, Stayton PS, Hoffman AS, Leong KW. Formulation of chitosan-DNA nanoparticles with poly (propyl acrylic acid) enhances gene expression. J Biomater Sci Polym Ed. 2004;15:1405–21.

    Article  CAS  PubMed  Google Scholar 

  30. Hu Y, Ding Y, Ding D, Sun M, Zhang L, Jiang X, Yang C. Hollow chitosan/poly (acrylic acid) nanospheres as drug carriers. Biomacromol. 2007;8:1069–76.

    Article  CAS  Google Scholar 

  31. Ping Y, Liu CD, Tang GP, Li JS, Li J, Yang WT, Xu FJ. Functionalization of chitosan via atom transfer radical polymerization for gene delivery. Adv Funct Mater. 2010;20:3106–16.

    Article  CAS  Google Scholar 

  32. Sato T, Nakata M, Yang Z, Torizuka Y, Kishimoto S, Ishihara M. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency. J Gene Med. 2017;19:2968.

    Article  Google Scholar 

  33. Lallana E, Rios de la Rosa JM, Tirella A, Pelliccia M, Gennari A, Stratford IJ, Puri S, Ashford M, Tirelli N. Chitosan/hyaluronic acid nanoparticles: rational design revisited for RNA delivery. Mol Pharm. 2017;14:2422–36.

    Article  CAS  PubMed  Google Scholar 

  34. Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R. Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology. 2011;22:375101.

    Article  PubMed  Google Scholar 

  35. Mansur HS, Mansur AA, Curti E, De Almeida MV. Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards bio labeling and absorbing phosphate metabolites. J Mater Chem B. 2013;1:1696–711.

    Article  CAS  PubMed  Google Scholar 

  36. Saucier-Sawyer JK, Deng Y, Seo YE, Cheng CJ, Zhang J, Quijano E, Saltzman WM. Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. J Drug Target. 2015;23:736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pascual-Lucas M, Fernandez-Lizarbe S, Montesinos J, Guerri C. LPS or ethanol triggers clathrin-and rafts/caveolae-dependent endocytosis of TLR4 in cortical astrocytes. J Neurochem. 2014;129:448–62.

    Article  CAS  PubMed  Google Scholar 

  38. Santos-Carballal B, Fernández Fernández E, Goycoolea F. Chitosan in non-viral gene delivery: role of structure, characterization methods, and insights in cancer and rare diseases therapies. Polymers. 2018;10:444.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mansur AA, Mansur HS, Soriano-Araujo A, Lobato ZI. Fluorescent nanohybrids based on quantum dot–chitosan–antibody as potential cancer biomarkers. ACS Appl Mater Interfaces. 2014;6:11403–12.

    Article  CAS  PubMed  Google Scholar 

  40. Imran M, Ehrhardt CJ, Bertino MF, Shah MR, Yadavalli VK. Chitosan stabilized silver nanoparticles for the electrochemical detection of lipopolysaccharide: a facile biosensing approach for gram-negative bacteria. Micromachines. 2020;11:413.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2:8–21.

    Article  CAS  PubMed  Google Scholar 

  42. Zarei-Kheirabadi M, Mirsadeghi S, Vaccaro AR, Rahimi-Movaghar V, Kiani S. Protocol for purification and culture of astrocytes: useful not only in 2 days postnatal but also in adult rat brain. Mol Biol Rep. 2020;47:1783–94.

    Article  CAS  PubMed  Google Scholar 

  43. Yu AC, Lee Y, Eng L. Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res. 1993;34:295–303.

    Article  CAS  PubMed  Google Scholar 

  44. Zarei-Kheirabadi M, Hesaraki M, Shojaei A, Kiani S, Baharvand H. Generation of neural stem cells from adult astrocytes by using a single reprogramming factor. J Cell Physiol. 2019;234:18697–706.

    Article  CAS  PubMed  Google Scholar 

  45. Zarei-Kheirabadi M, Hesaraki M, Kiani S, Baharvand H. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in the injured spinal cord with a single zinc-finger transcription factor. Stem Cell Res Ther. 2019;10:1–19.

    Article  Google Scholar 

  46. Ye Q, Mettu S, Zhou M, Dagastine R, Ashokkumar M. Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 1: tuning physical & functional properties. Soft Matter. 2018;14:3202–8.

    Article  CAS  PubMed  Google Scholar 

  47. Dewald I, Isakin O, Schubert J, Kraus T, Chanana M. Protein identity and environmental parameters determine the final physicochemical properties of protein-coated metal nanoparticles. J Phys Chem C. 2015;119:25482–92.

    Article  CAS  Google Scholar 

  48. Mili B, Das K, Kumar A, Saxena AC, Singh P, Ghosh S, Bag S. Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J Mater Sci Mater Med. 2018;29:1–13.

    Article  CAS  Google Scholar 

  49. Guo L, Liu G, Hong RY, Li HZ. Preparation and characterization of chitosan poly (acrylic acid) magnetic microspheres. Mar Drugs. 2010;8:2212–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim S, Burgula Y, Ojanen-Reuhs T, Cousin MA, Reuhs BL, Mauer LJ. Differentiation of crude lipopolysaccharides from Escherichia coli strains using Fourier transform infrared spectroscopy and chemometrics. J Food Sci. 2006;71:57–61.

    Article  Google Scholar 

  51. Kim S, Reuhs B, Mauer L. Use of Fourier transform infrared spectra of crude bacterial lipopolysaccharides and chemometrics for differentiation of Salmonella enterica serotypes. J Appl Microbiol. 2005;99:411–7.

    Article  CAS  PubMed  Google Scholar 

  52. Bezerra Neto JR, de Lima NP, Sales FA, da Silva EE, Ladeira LO, Freire VN, Caetano EW. Phosphate group vibrational signatures of the osteoporosis drug alendronate. J Raman Spectrosc. 2014;45:801–6.

    Article  CAS  Google Scholar 

  53. Lin Y, Zhang L, Yao W, Qian H, Ding D, Wu W, Jiang X. Water-soluble chitosan-quantum dot hybrid nanospheres toward bioimaging and bio labeling. ACS Appl Mater Interfaces. 2011;3:995–1002.

    Article  CAS  PubMed  Google Scholar 

  54. Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials. 2007;28:1565–71.

    Article  CAS  PubMed  Google Scholar 

  55. Tan WB, Huang N, Zhang Y. Ultrafine biocompatible chitosan nanoparticles encapsulating multi-colored quantum dots for bioapplications. J Colloid Interface Sci. 2007;310:464–70.

    Article  CAS  PubMed  Google Scholar 

  56. Shao XR, Wei XQ, Song X, Hao LY, Cai XX, Zhang ZR, Peng Q, Lin YF. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 2015;48:465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nandhakumar S, Dhanaraju MD, Sundar VD, Heera B. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly (ε-caprolactone) nanoparticles. Bull Fac Pharm Cairo Univ. 2017;55:249–58.

    Google Scholar 

  58. Grabowska-Jadach I, Drozd M, Kulpińska D, Komendacka K, Pietrzak M. Modification of fluorescent nanocrystals with 6-thioguanine: monitoring of drug delivery. Appl Nanosci. 2020;10:83–93.

    Article  CAS  Google Scholar 

  59. Yu L, Tan M, Ho B, Ding JL, Wohland T. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of a lipopolysaccharide. Anal Chim Acta. 2006;556:216–25.

    Article  CAS  PubMed  Google Scholar 

  60. Coccini T, Caloni F, Ramirez Cando LJ, De Simone U. Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol. 2017;37:361–73.

    Article  CAS  PubMed  Google Scholar 

  61. Au C, Mutkus L, Dobson A, Riffle J, Lalli J, Aschner M. Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biol Trace Elem Res. 2007;120:248–56.

    Article  CAS  PubMed  Google Scholar 

  62. Tenenbaum M, Azab AN, Kaplanski J. Effects of estrogen against LPS-induced inflammation and toxicity in primary rat glial and neuronal cultures. J Endotoxin Res. 2007;13:158–66.

    Article  CAS  PubMed  Google Scholar 

  63. Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neurotoxicity of nanomaterials: an up-to-date overview. Nanomaterials. 2019;9:96.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanoparticle Res. 2014;16:1–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Here, we acknowledge the Iran National Science Foundation (INSF) for supporting us in this research.

Funding

This work was supported by the Iran National Science Foundation (INSF) under Grant number [96004422]. Prof. Masoud Frounchi has received this research support from INSF.

Author information

Authors and Affiliations

Authors

Contributions

Parinaz Sabourian: substantial contribution to the conception, design of the work, the acquisition, analysis, and interpretation of data; has drafted the work and substantively revised it. Masoud Frounchi: substantial contribution to the conception and design of the work and has substantively revised the work. Sahar Kiani: substantial contribution to the conception and design of the work and has substantively revised the work. Shohreh Mashayekhan: substantial contribution to the conception and has substantively revised the work. Masoumeh Zarei Kheirabadi: analysis, interpretation of data; and has drafted the work. Yasaman Heydari: analysis, interpretation of data; and has drafted the work. Seyed Sajad Ashraf: analysis, and interpretation of data.

Corresponding author

Correspondence to Masoud Frounchi.

Ethics declarations

Ethics approval and consent to participate

The animal studies were performed in line with the principles of the Declaration of the ROYAN Institute of Iran. Approval was granted by the ethics committee of the ROYAN Institute of Iran. No human studies have been performed in this research.

Consent for publication

No human studies have been performed in this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabourian, P., Frounchi, M., Kiani, S. et al. Targeting reactive astrocytes by pH-responsive ligand-bonded polymeric nanoparticles in spinal cord injury. Drug Deliv. and Transl. Res. 13, 1842–1855 (2023). https://doi.org/10.1007/s13346-023-01300-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01300-3

Keywords

Navigation