Skip to main content

Advertisement

Log in

Nanoengineered drug delivery in cancer immunotherapy for overcoming immunosuppressive tumor microenvironment

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Almost like a living being in and of itself, tumors actively interact with and modify their environment to escape immune responses. Owing to the pre-formation of cancer-favorable microenvironment prior to anti-cancer treatment, the numerous attempts that followed propose limited efficacy in oncology. Immunogenicity by activation of immune cells within the tumor microenvironment or recruitment of immune cells from nearby lymph nodes is quickly offset as the immunosuppressive environment, rapidly converting immunogenic cells into immune suppressive cells, overriding the immune system. Tumor cells, as well as regulatory cells, namely M2 macrophages, Treg cells, and MDSCs, derived by the immunosuppressive environment, also cloak from potential anti-tumoral factors by directly or indirectly secreting cytokines, such as IL-10 and TGF-β, related to immune regulation. Enzymes and other metabolic or angiogenetic constituents — VEGF, IDO1, and iNOS — are also employed directed for anti-cancer immune cell malfunctioning. Therefore, the conversion of “cold” immunosuppressive environment into “hot” immune responsive environment is of paramount importance, bestowing the advances in the field of cancer immunotherapy the opportunity to wholly fulfill its intended purpose. This paper reviews the mechanisms by which tumors wield to exercise immune suppression and the nanoengineered delivery strategies being developed to overcome this suppression.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

On request.

References

  1. Turan T, Kongpachith S, Halliwill K, Roelands J, Hendrickx W, Marincola FM, et al. A balance score between immune stimulatory and suppressive microenvironments identifies mediators of tumour immunity and predicts pan-cancer survival. Br J Cancer. Springer US; 2021;124:760–9. Available from: https://doi.org/10.1038/s41416-020-01145-4.

  2. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. Springer US 2021;6. Available from: https://doi.org/10.1038/s41392-021-00658-5.

  4. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. Springer US 2019;120:6–15. Available from: https://doi.org/10.1038/s41416-018-0328-y.

  5. Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res Biomarker Research. 2020;8:1–16.

    Google Scholar 

  6. Schnell A, Bod L, Madi A, Kuchroo VK. The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Res. Springer US 2020;30:285–99. Available from: https://doi.org/10.1038/s41422-020-0277-x.

  7. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. Springer US 2021;21:345–59. Available from: https://doi.org/10.1038/s41568-021-00347-z.

  8. Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, et al. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther. Springer US 2020;5. Available from: https://doi.org/10.1038/s41392-020-00348-8.

  9. Kim R, Emi M, Tanabe K, Arihiro K. Tumor-Driven Evolution of Immunosuppressive Networks during Malignant Progression. Cancer Res. 2006;66:5527–36.

    CAS  PubMed  Google Scholar 

  10. Rogovskii V. Modulation of Inflammation-Induced Tolerance in Cancer. Front Immunol. 2020;11:1–5.

    Google Scholar 

  11. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. Elsevier Ltd 2015;35:S185–98. Available from: https://doi.org/10.1016/j.semcancer.2015.03.004.

  12. Welton RS, Blackman LR. Suicide and the air force mental health provider: Frequency and impact. Mil Med. 2006;171:844–8.

    PubMed  Google Scholar 

  13. Guerrouahen BS, Maccalli C, Cugno C, Rutella S, Akporiaye ET. Reverting Immune Suppression to Enhance Cancer Immunotherapy. Front Oncol. 2020;9.

  14. Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration. 2022;2:20210166.

    PubMed  PubMed Central  Google Scholar 

  15. Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, et al. Tumor-Associated Macrophages—Implications for Molecular Oncology and Imaging. Biomedicines. 2021;9:1–20.

    Google Scholar 

  16. Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol. 2020;11.

  17. Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. BioMed Central 2022;41:1–39. Available from: https://doi.org/10.1186/s13046-022-02272-x.

  18. Luo W, Napoleon JV, Zhang F, Lee YG, Wang B, Putt KS, et al. Repolarization of Tumor-Infiltrating Myeloid Cells for Augmentation of CAR T Cell Therapies. Front Immunol. 2022;13:1–13.

    Google Scholar 

  19. Zhou X, Tang J, Cao H, Fan H, Li B. Tissue resident regulatory T cells: Novel therapeutic targets for human disease. Cell Mol Immunol. 2015;12:543–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res Nature Publishing Group. 2017;27:109–18.

    CAS  Google Scholar 

  21. Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med. 2022;10:205031212110690.

    Google Scholar 

  22. Qiao J, Fu YX. Cytokines that target immune killer cells against tumors. Cell Mol Immunol. Springer US 2020;17:722–7. Available from: https://doi.org/10.1038/s41423-020-0481-0.

  23. Ito H, Ando T, Arioka Y, Saito K, Seishima M. Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumour effects of a Toll-like receptor 7 agonist in an established cancer model. Immunology. 2015;144:621–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhai L, Bell A, Ladomersky E, Lauing KL, Bollu L, Sosman JA, et al. Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Front Immunol. 2020;11:1–15.

    Google Scholar 

  25. Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol. Nature Publishing Group 2018;15:428–37. Available from: https://doi.org/10.1038/cmi.2018.4.

  26. Dai L, Yao M, Fu Z, Li X, Zheng X, Meng S, et al. Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy. Nat Commun. Springer US 2022;13:1–17.

  27. Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. Springer US 2020;52:1475–85. Available from: https://doi.org/10.1038/s12276-020-00500-y.

  28. Czystowska-Kuzmicz M, Sosnowska A, Nowis D, Ramji K, Szajnik M, Chlebowska-Tuz J, et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 2019;10:1–16.

    CAS  Google Scholar 

  29. Xue Q, Yan Y, Zhang R, Xiong H. Regulation of iNOS on immune cells and its role in diseases. Int J Mol Sci. 2018;19.

  30. Clemente GS, van Waarde A, Antunes IF, Dömling A, Elsinga PH. Arginase as a potential biomarker of disease progression: A molecular imaging perspective. Int J Mol Sci. 2020;21:1–36.

    Google Scholar 

  31. Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, et al. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol. 2019;176:155–76.

    CAS  PubMed  Google Scholar 

  32. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. Springer US 2019;18:197–218. Available from: https://doi.org/10.1038/s41573-018-0007-y.

  33. Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11:5265–86.

    Google Scholar 

  34. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold tumors: A therapeutic challenge for immunotherapy. Front Immunol. 2019;10:1–10.

    CAS  Google Scholar 

  35. Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2018;19.

  36. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol Nature Publishing Group. 2010;11:889–96.

    CAS  Google Scholar 

  37. Underhill DM, Bassetti M, Rudensky A, Aderem A. Dynamic interactions of macrophages with T cells during antigen presentation. J Exp Med. 1999;190:1909–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Long KB, Beatty GL. Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology. 2013;2:1–9.

    Google Scholar 

  39. Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 2021;6.

  40. Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther. Springer US 2021;6:1–21.

  41. Wei B, Pan J, Yuan R, Shao B, Wang Y, Guo X, et al. Polarization of Tumor-Associated Macrophages by Nanoparticle-Loaded Escherichia coli Combined with Immunogenic Cell Death for Cancer Immunotherapy. Nano Lett. 2021;21:4231–40.

    CAS  PubMed  Google Scholar 

  42. Aminin D, Wang YM. Macrophages as a “weapon” in anticancer cellular immunotherapy. Kaohsiung J Med Sci. 2021;37:749–58.

    CAS  PubMed  Google Scholar 

  43. Wyatt Shields C, Evans MA, Wang LLW, Baugh N, Iyer S, Wu D, et al. Cellular backpacks for macrophage immunotherapy. Sci Adv. 2020;6:1–12.

    Google Scholar 

  44. Mikami N, Kawakami R, Sakaguchi S. New Treg cell-based therapies of autoimmune diseases: towards antigen-specific immune suppression. Curr Opin Immunol Elsevier Ltd. 2020;67:36–41.

    CAS  Google Scholar 

  45. Kim JH, Kim BS, Lee SK. Regulatory T cells in tumor microenvironment and approach for anticancer immunotherapy. Immune Netw. 2020;20:1–17.

    Google Scholar 

  46. Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol. 2021;51:280–91.

    CAS  PubMed  Google Scholar 

  47. Solomon I, Amann M, Goubier A, Arce Vargas F, Zervas D, Qing C, et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat Cancer. Springer US 2020;1:1153–66. Available from: https://doi.org/10.1038/s43018-020-00133-0.

  48. Zammarchi F, Havenith K, Bertelli F, Vijayakrishnan B, Chivers S, van Berkel PH. CD25-targeted antibody-drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J Immunother cancer. 2020;8:1–13.

    Google Scholar 

  49. Yang Y, Li C, Liu T, Dai X, Bazhin AV. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Front Immunol. 2020;11:1–22.

    CAS  Google Scholar 

  50. Raskov H, Orhan A, Gaggar S, Gögenur I. Neutrophils and polymorphonuclear myeloid-derived suppressor cells: an emerging battleground in cancer therapy. Oncogenesis. Springer US 2022;11:1–16.

  51. Zhang T, Xiong H, Ma X, Gao Y, Xue P, Kang Y, et al. Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloid-Derived Suppressor Cells and Heightening Immunogenicity. Small Methods. 2021;5:1–14.

    CAS  Google Scholar 

  52. Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Cell. Elsevier Inc 2010;140:883–99.

  53. Stanilov N, Miteva L, Deliysky T, Jovchev J, Stanilova S. Advanced Colorectal Cancer Is Associated With Enhanced IL-23 and IL-10 Serum Levels. Lab Med. 2010;41:159–63.

    Google Scholar 

  54. Hsu P, Santner-Nanan B, Hu M, Skarratt K, Lee CH, Stormon M, et al. IL-10 Potentiates Differentiation of Human Induced Regulatory T Cells via STAT3 and Foxo1. J Immunol. 2015;195:3665–74.

    CAS  PubMed  Google Scholar 

  55. Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther. 2005;4:924–33.

    CAS  PubMed  Google Scholar 

  56. De Vries JE. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med Informa Healthcare. 1995;27:537–41.

    Google Scholar 

  57. Marchi LHL, Paschoalin T, Travassos LR, Rodrigues EG. Gene therapy with interleukin-10 receptor and interleukin-12 induces a protective interferon-γ-dependent response against B16F10-Nex2 melanoma. Cancer Gene Ther Nature Publishing Group. 2010;18:110–22.

    Google Scholar 

  58. Silva JR, Sales NS, Silva MO, Aps LRMM, Moreno ACR, Rodrigues EG, et al. Expression of a soluble IL-10 receptor enhances the therapeutic effects of a papillomavirus-associated antitumor vaccine in a murine model. Cancer Immunol Immunother. Springer Berlin Heidelberg 2019;68:753–63.

  59. Shen L, Li J, Liu Q, Song W, Zhang X, Tiruthani K, et al. Local Blockade of Interleukin 10 and C-X-C Motif Chemokine Ligand 12 with Nano-Delivery Promotes Antitumor Response in Murine Cancers. ACS Nano. 2018;12:9830–41.

    CAS  PubMed  Google Scholar 

  60. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol Nature Publishing Group. 2010;10:554–67.

    CAS  Google Scholar 

  61. Cai H, Dai X, Guo X, Zhang L, Cao K, Yan F, et al. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma. Acta Biomater. Elsevier Ltd 2021;127:276–86. Available from: https://doi.org/10.1016/j.actbio.2021.03.051.

  62. Zhou Q, Li Y, Zhu Y, Yu C, Jia H, Bao B, et al. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J Control Release. Elsevier 2018;275:67–77. Available from: https://doi.org/10.1016/j.jconrel.2018.02.026.

  63. Brücher BLDM, Jamall IS. Epistemology of the origin of cancer: a new paradigm. BMC Cancer. 2014;14:1–15.

    Google Scholar 

  64. Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.

    CAS  PubMed  Google Scholar 

  65. Collins K, Jacks T, Pavletich NP. The cell cycle and cancer. Proc Natl Acad Sci USA. 1997;94:2776–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2:213–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene. 2003;22:6549–56.

  68. Zhao Z, Li Y, Shukla R, Liu H, Jain A, Barve A, et al. Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer. Theranostics. 2019;9:4508–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Friedman M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int J Tryptophan Res. 2018;11.

  70. Szabo A, Gogolak P, Koncz G, Foldvari Z, Pazmandi K, Miltner N, et al. Immunomodulatory capacity of the serotonin receptor 5-HT2B in a subset of human dendritic cells. Sci Rep. Springer US 2018;8:1–12. Available from: https://doi.org/10.1038/s41598-018-20173-y.

  71. Herr N, Bode C, Duerschmied D. The Effects of Serotonin in Immune Cells. Front Cardiovasc Med. 2017;4:1–11.

    Google Scholar 

  72. Sun B, Hyun H, Li L tao, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin. Springer US 2020;41:970–85. Available from: https://doi.org/10.1038/s41401-020-0424-4.

  73. Holmgaard RB, Zamarin D, Munn DH, Merghoub T, Wolchok JD. Expression of indoleamine 2.3-dioxygenase by tumors induces local and systemic immunosuppressive effects in a murine melanoma model. J Immunother Cancer. 2014;2.

  74. Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol. 2020;11:1–17.

    Google Scholar 

  75. Silk JD, Lakhal S, Laynes R, Vallius L, Karydis I, Marcea C, et al. IDO Induces Expression of a Novel Tryptophan Transporter in Mouse and Human Tumor Cells. J Immunol. 2011;187:1617–25.

    CAS  PubMed  Google Scholar 

  76. Jin SM, Lee SN, Kim JE, Yoo YJ, Song C, Shin HS, et al. Overcoming Chemoimmunotherapy-Induced Immunosuppression by Assemblable and Depot Forming Immune Modulating Nanosuspension. Adv Sci. 2021;8:1–15.

    Google Scholar 

  77. Grobben Y, Uitdehaag JCM, Willemsen-Seegers N, Tabak WWA, de Man J, Buijsman RC, et al. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. J Struct Biol X. Elsevier 2020;4:100014. Available from: https://doi.org/10.1016/j.yjsbx.2019.100014.

  78. Niu F, Yu Y, Li Z, Ren Y, Li Z, Ye Q, et al. Arginase: An emerging and promising therapeutic target for cancer treatment. Biomed Pharmacother. 2022;149.

  79. Munder M. Arginase : an emerging key player in the mammalian immune system. Br J Pharmacol. 2009;158:638–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Steggerda SM, Bennett MK, Chen J, Emberley E, Huang T, Janes JR, et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 2017;5:1–18.

  81. Lu M, Zhang H, Li D, Childers M, Pu Q, Palte RL, et al. Structure-Based Discovery of Proline-Derived Arginase Inhibitors with Improved Oral Bioavailability for Immuno-Oncology. ACS Med Chem Lett. 2021;12:1380–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li YN, Wang ZW, Li F, Zhou LH, Jiang YS, Yu Y, et al. Inhibition of myeloid-derived suppressor cell arginase-1 production enhances T-cell-based immunotherapy against Cryptococcus neoformans infection. Nat Commun. Springer US 2022;13:4074. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35835754%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC9283461.

  83. Sosnowska A, Chlebowska-Tuz J, Matryba P, Pilch Z, Greig A, Wolny A, et al. Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma. Oncoimmunology. Taylor & Francis 2021;10:1–15. Available from: https://doi.org/10.1080/2162402X.2021.1956143.

  84. Vonwirth V, Bülbül Y, Werner A, Echchannaoui H, Windschmitt J, Habermeier A, et al. Inhibition of Arginase 1 Liberates Potent T Cell Immunostimulatory Activity of Human Neutrophil Granulocytes. Front Immunol. 2021;11:1–16.

    Google Scholar 

  85. Grzybowski MM, Stańczak PS, Pomper P, Błaszczyk R, Borek B, Gzik A, et al. OATD-02 Validates the Benefits of Pharmacological Inhibition of Arginase 1 and 2 in Cancer. Cancers (Basel). 2022;14:1–17.

    Google Scholar 

  86. Vanini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334–43.

    CAS  Google Scholar 

  87. Moorthi C, Manavalan R, Kathiresan K. Nanotherapeutics to Overcome Conventional Cancer Chemotherapy Limitations. J Pharm Pharm Sci. 2011;14:67–77.

    Google Scholar 

  88. Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front Pharmacol. 2018;9:1–3.

    Google Scholar 

  89. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. Springer US 2019;18:175–96.

  90. Sadeghi Rad H, Monkman J, Warkiani ME, Ladwa R, O’Byrne K, Rezaei N, et al. Understanding the tumor microenvironment for effective immunotherapy. Med Res Rev. 2021;41:1474–98.

    PubMed  Google Scholar 

  91. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: Myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138:105–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Boutilier AJ, Elsawa SF. Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci. 2021;22.

  93. Lee S, Margolin K. Cytokines in Cancer Immunotherapy. 2011;3856–93.

Download references

Acknowledgements

The authors are thankful to National Research Foundation (NRF) of Korea government for the financial support (grant numbers 2020R1A2C3006888 and SRC-2017R1A5A1014560).

Funding

This work was supported by National Research Foundation (NRF) grants funded by the Korean government (grant numbers 2020R1A2C3006888 and SRC-2017R1A5A1014560).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualization of the work. Sei Hyun Park contributed to idea design, Ryounho Eun contributed to figure design, Janghun Heo wrote the draft of the manuscript, and Yong Taik Lim critically revised the draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong Taik Lim.

Ethics declarations

Ethics approval and consent to participate

This is a review article and does not involve a research protocol or animal and human studies requiring approval by ethics committee or the relevant institutional review board.

Consent for publication

All the authors reviewed and approved the manuscript of this review paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.H., Eun, R., Heo, J. et al. Nanoengineered drug delivery in cancer immunotherapy for overcoming immunosuppressive tumor microenvironment. Drug Deliv. and Transl. Res. 13, 2015–2031 (2023). https://doi.org/10.1007/s13346-022-01282-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01282-8

Keywords

Navigation