Skip to main content

Advertisement

Log in

Cell-based carrier for targeted hitchhiking delivery

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Drug delivery systems aim at improving drug transport efficiency and therapeutic efficacy by rational design, and current research on conventional delivery systems brings new developments for disease treatment. Recently, studies on cell-based drug delivery systems are rapidly emerging, which shows great advantages in comparison to conventional drug delivery system. The system uses cells as carriers to delivery conventional drugs or nanomedicines and shows good biocompatibility and enhanced targeting efficiency, beneficial from self component and its physiological function. The construction methodology of cell-based carrier determines the effect on the physiological functions of transporting cell and affects its clinical application. There are different strategies to prepare cell-based carrier, such as direct internalization or surface conjugation of drugs or drug loaded materials. Thus, it is necessary to fully understand the advantages and disadvantages of different strategies for constructing cell-based carrier and then to seek the appropriate construction methodology for achieving better therapeutic results based on disease characterization. We here summarize the application of different types of cell-based carriers reported in recent years and further discuss their applications in disease therapy and the dilemmas faced in clinical translation. We hope that this summary can accelerate the process of clinical translation by promoting the technology development of cell-based carrier.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laracuente ML, Yu MH, McHugh KJ. Zero-order drug delivery: state of the art and future prospects. J Control Release. 2020;327:834–56.

    Article  CAS  PubMed  Google Scholar 

  3. Moniruzzaman M, Min T. Curcumin, Curcumin nanoparticles and curcumin nanospheres: a review on their pharmacodynamics based on monogastric farm animal, poultry and fish nutrition. Pharmaceutics. 2020;12(5):447.

    Article  CAS  PubMed Central  Google Scholar 

  4. Wang Y, Liu Z, Li T, Chen L, Lyu J, Li C, Lin Y, Hao N, Zhou M, Zhong Z. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis. Theranostics. 2019;9(3):708–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:587997.

  6. Ordonez-Gutierrez L, Wandosell F. Nanoliposomes as a therapeutic tool for Alzheimer’s disease. Front Synaptic Neurosci. 2020;12:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chauhan AS. Dendrimers for Drug Delivery. Molecules. 2018;23(4):938.

    Article  PubMed Central  Google Scholar 

  8. Wu K, Su D, Liu J, Saha R Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology. 2019;30(50):502003.

  9. Erdogar N, Akkin S, Bilensoy E. Nanocapsules for drug delivery: an updated review of the last decade. Recent Pat Drug Deliv Formul. 2018;12(4):252–66.

    Article  CAS  PubMed  Google Scholar 

  10. Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci. 2020;8(15):4109–4128.

  11. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.

    Article  CAS  Google Scholar 

  12. Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, Chen YY, MacMillan P, Chan WCW. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano. 2018;12(8):8423–35.

    Article  CAS  PubMed  Google Scholar 

  13. Hamidi M, Azadi A, Rafiei P, Ashrafi H. A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach. Crit Rev Ther Drug Carrier Syst. 2013;30(5):435–67.

    Article  CAS  PubMed  Google Scholar 

  14. Tavares AJ, Poon W, Zhang YN, Dai Q, Besla R, Ding D, Ouyang B, Li A, Chen J, Zheng G, Robbins C, Chan WCW. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc Natl Acad Sci U S A. 2017;114(51):E10871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anselmo AC, Gupta V, Zern BJ, Pan D, Zakrewsky M, Muzykantov V, Mitragotri S. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano. 2013;7(12):11129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarkar S, Alam MA, Shaw J, Dasgupta AK. Drug delivery using platelet cancer cell interaction. Pharm Res. 2013;30(11):2785–94.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang C, Ling CL, Pang L, Wang Q, Liu JX, Wang BS, Liang JM, Guo YZ, Qin J, Wang JX. Direct macromolecular drug delivery to cerebral ischemia area using neutrophil-mediated nanoparticles. Theranostics. 2017;7(13):3260–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl Med. 2018;7(9):651–63.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc Natl Acad Sci U S A. 1973;70(9):2663–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther. 2016;9:2873–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, Wang C, Wang X, Xu S. Therapeutic effects of transplantation of As-MiR-937-expressing mesenchymal stem cells in murine model of Alzheimer’s disease. Cell Physiol Biochem. 2015;37(1):321–30.

    Article  PubMed  Google Scholar 

  22. Gutierrez Millan C, Zarzuelo Castaneda A, Sayalero Marinero ML, Lanao JM. Factors associated with the performance of carrier erythrocytes obtained by hypotonic dialysis. Blood Cells Mol Dis. 2004;33(2):132–140.

  23. Cheng Z, Liu S, Wu X, Raza F, Li Y, Yuan W, Qiu M, Su J. Autologous erythrocytes delivery of berberine hydrochloride with long-acting effect for hypolipidemia treatment. Drug Deliv. 2020;27(1):283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L, Bernhardt I. Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem. 2011;28(5):847–56.

    Article  CAS  PubMed  Google Scholar 

  25. Yuan J, Yin WY, Wang Y, Chen J, Zhang ZM, Tang YX, Pei SY, Tan LX, Hu XW, Fan XG, Li N. Cargo-laden erythrocyte ghosts target liver mediated by macrophages. Transfus Apher Sci. 2021;60(1):102930.

  26. Chiarantini L, Cerasi A, Fraternale A, Andreoni F, Scari S, Giovine M, Clavarino E, Magnani M. Inhibition of macrophage iNOS by selective targeting of antisense PNA. Biochemistry. 2002;41(26):8471–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hamidi M, Azimi K, Mohammadi-Samani S. Co-encapsulation of a drug with a protein in erythrocytes for improved drug loading and release: phenytoin and bovine serum albumin (BSA). J Pharm Pharm Sci. 2011;14(1):46–59.

    Article  CAS  PubMed  Google Scholar 

  28. Marczak A, Bukowska B. ROS production and their influence on the cellular antioxidative system in human erythrocytes incubated with daunorubicin and glutaraldehyde. Environ Toxicol Pharmacol. 2013;36(1):171–81.

    Article  CAS  PubMed  Google Scholar 

  29. Mambrini G, Mandolini M, Rossi L, Pierige F, Capogrossi G, Salvati P, Serafini S, Benatti L, Magnani M. Ex vivo encapsulation of dexamethasone sodium phosphate into human autologous erythrocytes using fully automated biomedical equipment. Int J Pharm. 2017;517(1–2):175–84.

    Article  CAS  PubMed  Google Scholar 

  30. Rols MP. Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim Biophys Acta. 2006;1758(3):423–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lizano C, Sanz S, Luque J, Pinilla M. In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. Biochimica et Biophysica Acta (BBA) - General Subjects. 1998;1425(2):328–336.

  32. Lizano C, Pérez MT, Pinilla M. Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation. Life Sci. 2001;68(17):2001–16.

    Article  CAS  PubMed  Google Scholar 

  33. Hui SW. Overview of drug delivery and alternative methods to electroporation. Methods Mol Biol. 2008;423:91–107.

    Article  CAS  PubMed  Google Scholar 

  34. Ju C, Wen Y, Zhang L, Wang Q, Xue L, Shen J, Zhang C. Neoadjuvant chemotherapy based on abraxane/human neutrophils cytopharmaceuticals with radiotherapy for gastric cancer. Small. 2019;15(5):e1804191.

  35. Lv Y, Jun Y, Tang Z, Li X, Tao M, Zhang Z, Liu L, Sun S, Wang Q, Luo C, Zhang L. Enhanced antitumor efficacy of macrophage-mediated egg yolk lipid-derived delivery system against breast cancer. Int J Nanomedicine. 2020;15:10075–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harisa Gel D, Ibrahim MF, Alanazi FK. Characterization of human erythrocytes as potential carrier for pravastatin: an in vitro study. Int J Med Sci. 2011;8(3):222–230.

  37. Lisini D, Nava S, Frigerio S, Pogliani S, Maronati G, Marcianti A, Cocce V, Bondiolotti G, Cavicchini L, Paino F, Petrella F, Alessandri G, Parati EA, Pessina A. Automated large-scale production of paclitaxel loaded mesenchymal stromal cells for cell therapy applications. Pharmaceutics. 2020;12(5):411.

    Article  CAS  PubMed Central  Google Scholar 

  38. Pessina A, Cocce V, Bonomi A, Cavicchini L, Sisto F, Ferrari M, Ciusani E, Navone S, Marfia G, Parati E, Alessandri G. Human skin-derived fibroblasts acquire in vitro anti-tumor potential after priming with Paclitaxel. Anticancer Agents Med Chem. 2013;13(3):523–30.

    CAS  PubMed  Google Scholar 

  39. Scioli MG, Artuso S, D'Angelo C, Porru M, D'Amico F, Bielli A, Gentile P, Cervelli V, Leonetti C, Orlandi A. Adipose-derived stem cell-mediated paclitaxel delivery inhibits breast cancer growth. PLoS One. 2018;13(9):e0203426.

  40. Bonomi A, Lisini D, Navone SE, Frigerio S, Dossena M, Ciusani E, Rampini P, Marfia G, Cocce V, Cavicchini L, Sisto F, Parati E, Mantegazza R, Rimoldi M, Rizzetto M, Alessandri G, Pessina A. Human CD14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of glioblastoma. Cytotherapy. 2015;17(3):310–9.

    Article  CAS  PubMed  Google Scholar 

  41. Marei HE, Casalbore P, Althani A, Cocce V, Cenciarelli C, Alessandri G, Brini AT, Parati E, Bondiolotti G, Pessina A. Human olfactory bulb neural stem cells (Hu-OBNSCs) can be loaded with paclitaxel and used to inhibit glioblastoma cell growth. Pharmaceutics. 2019;11(1):45.

    Article  CAS  PubMed Central  Google Scholar 

  42. Cocce V, Farronato D, Brini AT, Masia C, Gianni AB, Piovani G, Sisto F, Alessandri G, Angiero F, Pessina A. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci Rep. 2017;7(1):9376.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Levy O, Rothhammer V, Mascanfroni I, Tong Z, Kuai R, De Biasio M, Wang Q, Majid T, Perrault C, Yeste A, Kenison JE, Safaee H, Musabeyezu J, Heinelt M, Milton Y, Kuang H, Lan H, Siders W, Multon MC, Rothblatt J, Massadeh S, Alaamery M, Alhasan AH, Quintana FJ, Karp JM. A cell-based drug delivery platform for treating central nervous system inflammation. J Mol Med (Berl). 2021;99(5):663–71.

    Article  CAS  Google Scholar 

  44. Yoshitani J, Kabata T, Arakawa H, Kato Y, Nojima T, Hayashi K, Tokoro M, Sugimoto N, Kajino Y, Inoue D, Ueoka K, Yamamuro Y, Tsuchiya H. Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats. Sci Rep. 2020;10(1):11182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang X, Gao J, Ouyang X, Wang J, Sun X, Lv Y. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomedicine. 2018;13:5231–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang X, Zhang F, Wang H, Niu G, Choi KY, Swierczewska M, Zhang G, Gao H, Wang Z, Zhu L, Choi HS, Lee S, Chen X. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials. 2013;34(7):1772–80.

    Article  CAS  PubMed  Google Scholar 

  47. Ginn FL, Hochstein P, Trump BF. Membrane alterations in hemolysis: internalization of plasmalemma induced by primaquine. Science. 1969;164(3881):843–5.

    Article  CAS  PubMed  Google Scholar 

  48. Ben-Bassat I, Bensch KG, Schrier SL. Drug-induced erythrocyte membrane internalization. J Clin Invest. 1972;51(7):1833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Talwar N, Jain NK. Erythrocyte based delivery system of primaquine: in vitro characterization. J Microencapsul. 1992;9(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  50. Schrier SL. Drug-induced endocytosis and entrapment in red cells and ghosts. Methods Enzymol. 1987;149:260–70.

    Article  CAS  PubMed  Google Scholar 

  51. Davies A, Lewis DJ, Watson SP, Thomas SG, Pikramenou Z. pH-controlled delivery of luminescent europium coated nanoparticles into platelets. Proc Natl Acad Sci U S A. 2012;109(6):1862–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kwon YM, Chung HS, Moon C, Yockman J, Park YJ, Gitlin SD, David AE, Yang VC. L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J Control Release. 2009;139(3):182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang Q, Larsen SK, Mi Z, Robbins PD, Basse PH. PTD-mediated loading of tumor-seeking lymphocytes with prodrug-activating enzymes. AAPS J. 2008;10(4):614–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Favretto ME, Cluitmans JC, Bosman GJ, Brock R. Human erythrocytes as drug carriers: loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes. J Control Release. 2013;170(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  55. Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, Wei Z, Wang L, Kong L, Sun H, Ping Q, Mo R, Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12(7):692–700.

    Article  CAS  PubMed  Google Scholar 

  56. Villa CH, Cines DB, Siegel DL, Muzykantov V. Erythrocytes as carriers for drug delivery in blood transfusion and beyond. Transfus Med Rev. 2017;31(1):26–35.

    Article  PubMed  Google Scholar 

  57. Chen Z, Li H, Gao X, Bian A, Yan H, Kong D, Liu X. Human babesiosis in China: a systematic review. Parasitol Res. 2019;118(4):1103–12.

    Article  PubMed  Google Scholar 

  58. Zelepukin IV, Yaremenko AV, Shipunova VO, Babenyshev AV, Balalaeva IV, Nikitin PI, Deyev SM, Nikitin MP. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale. 2019;11(4):1636–46.

    Article  CAS  PubMed  Google Scholar 

  59. Brenner JS, Pan DC, Myerson JW, Marcos-Contreras OA, Villa CH, Patel P, Hekierski H, Chatterjee S, Tao JQ, Parhiz H, Bhamidipati K, Uhler TG, Hood ED, Kiseleva RY, Shuvaev VS, Shuvaeva T, Khoshnejad M, Johnston I, Gregory JV, Lahann J, Wang T, Cantu E, Armstead WM, Mitragotri S, Muzykantov V. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun. 2018;9(1):2684.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chambers E, Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release. 2004;100(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  61. Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, Fu C, Li Y, Qu Q, Zhang Y, Ji S, Chen L, Chen D, Tang F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano. 2011;5(9):7462–70.

    Article  CAS  PubMed  Google Scholar 

  62. Kolesnikova TA, Kiragosyan G, Le TH, Springer S, Winterhalter M. Protein a functionalized polyelectrolyte microcapsules as a universal platform for enhanced targeting of cell surface receptors. ACS Appl Mater Interfaces. 2017;9(13):11506–17.

    Article  CAS  PubMed  Google Scholar 

  63. Hu Q, Sun W, Wang J, Ruan H, Zhang X, Ye Y, Shen S, Wang C, Lu W, Cheng K, Dotti G, Zeidner JF, Wang J, Gu Z. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng. 2018;2(11):831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang L, Zheng Y, Melo MB, Mabardi L, Castano AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, Maus MV, Irvine DJ. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36(8):707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji W, Smith PN, Koepsel RR, Andersen JD, Baker SL, Zhang L, Carmali S, Myerson JW, Muzykantov V, Russell AJ. Erythrocytes as carriers of immunoglobulin-based therapeutics. Acta Biomater. 2020;101:422–35.

    Article  CAS  PubMed  Google Scholar 

  66. Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med. 2010;16(9):1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tomas RMF, Gibson MI. Optimization and stability of cell-polymer hybrids obtained by “clicking” synthetic polymers to metabolically labeled cell surface glycans. Biomacromol. 2019;20(7):2726–36.

    Article  CAS  Google Scholar 

  68. Laughlin ST, Agard NJ, Baskin JM, Carrico IS, Chang PV, Ganguli AS, Hangauer MJ, Lo A, Prescher JA, Bertozzi CR. Metabolic labeling of glycans with azido sugars for visualization and glycoproteomics. Methods Enzymol. 2006;415:230–50.

    Article  CAS  PubMed  Google Scholar 

  69. Xu L, Zolotarskaya OY, Yeudall WA, Yang H. Click hybridization of immune cells and polyamidoamine dendrimers. Adv Healthc Mater. 2014;3(9):1430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Joshi BP, Hardie J, Mingroni MA, Farkas ME. Surface-modified macrophages facilitate tracking of breast cancer-immune interactions. ACS Chem Biol. 2018;13(8):2339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mukthavaram R, Shi G, Kesari S, Simberg D. Targeting and depletion of circulating leukocytes and cancer cells by lipophilic antibody-modified erythrocytes. J Control Release. 2014;183:146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi G, Mukthavaram R, Kesari S, Simberg D. Distearoyl anchor-painted erythrocytes with prolonged ligand retention and circulation properties in vivo. Adv Healthc Mater. 2014;3(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  73. Gao C, Cheng Q, Wei J, Sun C, Lu S, Kwong CHT, Lee SMY, Zhong Z, Wang R. Bioorthogonal supramolecular cell-conjugation for targeted hitchhiking drug delivery. Mater Today. 2020;40:9–17.

    Article  CAS  Google Scholar 

  74. Doshi N, Swiston AJ, Gilbert JB, Alcaraz ML, Cohen RE, Rubner MF, Mitragotri S. Cell-based drug delivery devices using phagocytosis-resistant backpacks. Adv Mater. 2011;23(12):H105-109.

    Article  CAS  PubMed  Google Scholar 

  75. Polak R, Lim RM, Beppu MM, Pitombo RN, Cohen RE, Rubner MF. Liposome-loaded cell backpacks. Adv Healthc Mater. 2015;4(18):2832–41.

    Article  CAS  PubMed  Google Scholar 

  76. Shields IV CW, Evans MA, Wang LL, Baugh N, Iyer S, Wu D, Zhao Z, Pusuluri A, Ukidve A, Pan DC, Mitragotri S. Cellular backpacks for macrophage immunotherapy. Sci Adv. 2020;6(18):eaaz6579.

  77. Swiston AJ, Gilbert JB, Irvine DJ, Cohen RE, Rubner MF. Freely suspended cellular “backpacks” lead to cell aggregate self-assembly. Biomacromol. 2010;11(7):1826–32.

    Article  CAS  Google Scholar 

  78. Gamlin PD, Alexander JJ, Boye SL, Witherspoon CD, Boye SE. SubILM injection of AAV for gene delivery to the retina. Methods Mol Biol. 2019;1950:249–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer. 2021;20(1):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sarkar S, Tran N, Soni SK, Nasa Z, Drummond CJ, Conn CE. Cuboplex-mediated nonviral delivery of functional siRNA to Chinese hamster ovary (CHO) cells. ACS Appl Mater Interfaces. 2021;13(2):2336–45.

    Article  CAS  PubMed  Google Scholar 

  81. Campillo-Davo D, De Laere M, Roex G, Versteven M, Flumens D, Berneman ZN, Van Tendeloo VFI, Anguille S, Lion E. The ins and outs of messenger RNA electroporation for physical gene delivery in immune cell-based therapy. Pharmaceutics. 2021;13(3):396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Anguela XM, High KA. Entering the Modern era of gene therapy. Annu Rev Med. 2019;70:273–88.

    Article  CAS  PubMed  Google Scholar 

  83. Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin Pharmacokinet. 2002;41(12):901–11.

    Article  CAS  PubMed  Google Scholar 

  84. Breckpot K, Heirman C, Neyns B, Thielemans K. Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J Gene Med. 2004;6(11):1175–88.

    Article  CAS  PubMed  Google Scholar 

  85. Li J, Sharkey CC, Wun B, Liesveld JL, King MR. Genetic engineering of platelets to neutralize circulating tumor cells. J Control Release. 2016;228:38–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eremenko E, Mittal K, Berner O, Kamenetsky N, Nemirovsky A, Elyahu Y, Monsonego A. BDNF-producing, amyloid beta-specific CD4 T cells as targeted drug-delivery vehicles in Alzheimer’s disease. EBioMedicine. 2019;43:424–34.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, Zhang WJ, Jiang SF, Qadir A, Qian AR. The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 2019;20(21):5491.

    Article  CAS  PubMed Central  Google Scholar 

  88. Levy O, Zhao W, Mortensen LJ, Leblanc S, Tsang K, Fu M, Phillips JA, Sagar V, Anandakumaran P, Ngai J, Cui CH, Eimon P, Angel M, Lin CP, Yanik MF, Karp JM. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood. 2013;122(14):e23-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lissandrello CA, Santos JA, Hsi P, Welch M, Mott VL, Kim ES, Chesin J, Haroutunian NJ, Stoddard AG, Czarnecki A, Coppeta JR, Freeman DK, Flusberg DA, Balestrini JL, Tandon V. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing. Sci Rep. 2020;10(1):18045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Helal NA, Osami A, Helmy A, McDonald T, Shaaban LA, Nounou MI. Non-viral gene delivery systems: hurdles for bench-to-bedside transformation. Pharmazie. 2017;72(11):627–93.

    CAS  PubMed  Google Scholar 

  91. Wang L, Du J, Zhou Y, Wang Y. Safety of nanosuspensions in drug delivery. Nanomedicine. 2017;13(2):455–69.

    Article  CAS  PubMed  Google Scholar 

  92. Tay A, Melosh N. Nanostructured materials for intracellular cargo delivery. Acc Chem Res. 2019;52(9):2462–71.

    Article  CAS  PubMed  Google Scholar 

  93. Tang SKY, Marshall WF. Self-repairing cells: how single cells heal membrane ruptures and restore lost structures. Science. 2017;356(6342):1022–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Loo J, Sicher I, Goff A, Kim O, Clary N, Alexeev A, Sulchek T, Zamarayeva A, Han S, Calero-Garcia M. Microfluidic transfection of mRNA into human primary lymphocytes and hematopoietic stem and progenitor cells using ultra-fast physical deformations. Sci Rep. 2021;11(1):21407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aghaamoo M, Chen YH, Li X, Garg N, Jiang R, Yun JT, Lee AP. High-throughput and dosage-controlled intracellular delivery of large cargos by an acoustic-electric micro-vortices platform. Adv Sci (Weinh). 2022;9(1):e2102021.

  96. Hur J, Chung AJ. Microfluidic and nanofluidic intracellular delivery. Adv Sci (Weinh). 2021;8(15):e2004595.

Download references

Acknowledgements

We tender our apologies to those authors whose deserving research was not cited in this manuscript. Tonggong Liu and Cheng Gao contributed equally to this work.

Funding

This research was supported by the National Key Research and Development Program of China [No.2018YFC0809200], Guangdong Science and Technology Foundation [No. 2020B1111160001, B2019228], Shenzhen Science and Technology Foundation [GJHZ20200731095604013, RCBS20200714114856016, JCYJ20210324103204011, No. SGLH20180625171602058, No. 201906133000069] and the Open Project of Key Laboratory of Tropical Disease Control of the Ministry of Education (Sun Yat-Sen University) [No. 2019kfkt06], National Natural Science Foundation of China [No. 82073582 and 32001016], Discipline construction project of Guangdong Medical University [4SG21004G], Guangdong Provincial University Key Platform Featured Innovation Project [No. 2020KTSCX048], GuangDong Basic and Applied Basic Research Foundation [2020A1515110871], China Postdoctoral Science Foundation [2021T140479, 2020M682903].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dayong Gu or Huanwen Tang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Gao, C., Gu, D. et al. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv. and Transl. Res. 12, 2634–2648 (2022). https://doi.org/10.1007/s13346-022-01149-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01149-y

Keywords

Navigation