Skip to main content

Advertisement

Log in

Synergistic antitumor efficacy of PD-1-conjugated PTX- and ZSQ-loaded nanoliposomes against multidrug-resistant liver cancers

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor chemotherapeutic efficiency due to multidrug resistance (MDR); it is very important to develop a targeted nanocarrier for the treatment of HCC. In this study, a programmed death ligand 1 (PD-L1)–conjugated nanoliposome was constructed for co-delivery of paclitaxel (PTX) and P-glycoprotein (P-gp) inhibitor zosuquidar (ZSQ) to overcome MDR in human HCC cells and tumors in vivo. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to examine the nanoparticles morphology and size; PD-1-conjugated PTX and ZSQ-loaded nanoliposomes (PD-PZLP) revealed a spherical shape with a size of 139.5 ± 10.7 nm. Then, the physicochemical properties, as well as the drug loading capacity, release profile, cellular uptake, and cytotoxicity of the dual drug-encapsulated nanoliposomes were characterized. PD-PZLP displayed a high drug loading capacity of 20 ~ 30% for both PTX and ZSQ; the drug release of PTX and ZSQ in pH 5.0 was significantly faster than in pH 7.4. Cellular uptake study demonstrated PD-PZLP had higher internalization efficiency than non-targeted PZLP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and reactive oxygen species (ROS) analysis demonstrated that PD-PZLP triggered an excessive ROS reaction and cell apoptosis compared with that of free PTX or ZSQ, which was also consistent with the cell antiproliferative effects in MTT assay. Furthermore, PD-PZLP could enhance synergistic antitumor effects on 7721/ADM xenograft tumor model, which also significantly alleviated hepatotoxicity as evident from the decreased aspartate transaminase (AST) and alanine transaminase (ALT) levels. Overall, PD-PZLP exhibited high loading capacity, significant synergistic effects, promising antitumor efficacy, and the lowest toxicity, which provide a promising strategy to overcome MDR in HCC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author.

Abbreviations

HCC:

Hepatocellular carcinoma

MDR:

Multidrug resistance

P-gp:

P-glycoprotein

PTX:

Paclitaxel

ZSQ:

Zosuquidar

PD-L1:

Programmed death ligand1

PD-PZLP:

PD-L1-conjugated PTX and ZSQ-loaded nanoliposomes

ROS:

Reactive oxygen species

EPR:

Enhanced permeation and retention

NTA:

Nanoparticle tracking analysis

TEM:

Transmission electron microscope

HPLC:

High-performance liquid chromatography system

PBS:

Phosphate-buffered saline

DAPI:

4,6-Diamidino-2-phenylindole

PFA:

Paraformaldehyde

CLSM:

confocal laser scanning microscope

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gels

PVDF:

Polyvinylidene fluoride

CI:

Combination index

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

IHC:

Immunohistochemical

AST:

Aspartate transaminase

ALT:

Alanine transaminase

TBST:

Tris‑buffered saline with Tween 20

ECL:

enhanced chemiluminescence

mAb:

monoclonal antibodies

FITC:

Fluorescein Isothiocyanate

DCFH-DA:

dichlorofluorescin diacetate

DAB:

diaminebenzidine

References

  1. Shimizu Y, et al. Segmental analysis of respiratory liver motion in patients with and without a history of abdominal surgery. Jpn J Radiol. 2018;36(8):1–8.

    Article  Google Scholar 

  2. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55.

    Article  PubMed  Google Scholar 

  3. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62.

    Article  CAS  PubMed  Google Scholar 

  4. Waghray A, Murali AR, Menon KN. Hepatocellular carcinoma: from diagnosis to treatment. World J Hepatol. 2015;7(8):1020.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh MS, et al. MDR in cancer: addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res. 2017;126:2–30.

    Article  CAS  PubMed  Google Scholar 

  6. Horwitz MS, Torrespoveda K. Mechanisms of taxol-induced cell death are concentration dependent. Can Res. 1998;58(16):3620–6.

    Google Scholar 

  7. Yang Y-H, Mao J-W, Tan X-L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med. 2020;18(12):890–7.

    CAS  PubMed  Google Scholar 

  8. Jimenez-Lopez J, et al. Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomed Pharmacother. 2021;133:111059.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, et al. Paclitaxel suppresses hepatocellular carcinoma tumorigenesis through regulating Circ-BIRC6/miR-877-5p/YWHAZ axis. Onco Targets Ther. 2020;13:9377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu D, et al. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater. 2017;58:399–412.

    Article  CAS  PubMed  Google Scholar 

  11. Ma G, et al. Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. J Drug Delivery Sci Technol. 2021;63:102493.

    Article  CAS  Google Scholar 

  12. Du Z, et al. TPGS-galactose-modified polydopamine co-delivery nanoparticles of nitric oxide donor and doxorubicin for targeted chemo-photothermal therapy against drug-resistant hepatocellular carcinoma. ACS Appl Mater Interfaces. 2021;13(30):35518–32.

    Article  CAS  PubMed  Google Scholar 

  13. Cai L, et al. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials. 2015;37:456–68.

    Article  CAS  PubMed  Google Scholar 

  14. Liu M, et al. Intracellular target delivery of 10-hydroxycamptothecin with solid lipid nanoparticles against multidrug resistance. J Drug Target. 2015;23(9):800–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ghaleb H, et al. Design, synthesis and evaluation of a novel series of inhibitors reversing P-glycoprotein-mediated multidrug resistance. Chem Biol Drug Des. 2018;92(3):1708–16.

    Article  CAS  PubMed  Google Scholar 

  16. Lei M, et al. Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance. Drug Deliv. 2019;26(1):262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sprachman MM, et al. In vivo imaging of multidrug resistance using a third generation MDR1 inhibitor. Bioconjug Chem. 2014;25(6):1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baig B, et al. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed Pharmacother. 2019;116:108852.

    Article  CAS  PubMed  Google Scholar 

  19. Lu J, Wang J, Ling D. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small. 2018;14(5):1702037.

    Article  Google Scholar 

  20. Beltrán-Gracia E, et al. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10(1):1–40.

    Article  Google Scholar 

  21. Mitchell MJ, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.

    Article  CAS  PubMed  Google Scholar 

  22. Kim JS. Liposomal drug delivery system. J Pharm Investig. 2016;46(4):387–92.

    Article  Google Scholar 

  23. Park J, et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics. 2019;9(26):8073–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aronson MR, Medina SH, Mitchell MJ. Peptide functionalized liposomes for receptor targeted cancer therapy. APL Bioeng. 2021;5(1):011501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Mello RA, et al. New target therapies in advanced non-small cell lung cancer: a review of the literature and future perspectives. J Clin Med. 2020;9(11):3543.

    Article  PubMed Central  Google Scholar 

  26. Setordzi P, et al. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy. Eur J Pharmacol. 2021;895:173867.

    Article  CAS  PubMed  Google Scholar 

  27. Wu L, et al. PD-1/PD-L1 enhanced cisplatin resistance in gastric cancer through PI3K/AKT mediated P-gp expression. Int Immunopharmacol. 2021;94:107443.

    Article  CAS  PubMed  Google Scholar 

  28. Wu Q, et al. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol Sin. 2021;42(1):1–9.

    Article  PubMed  Google Scholar 

  29. Cui H, Dai G, Guan J. Programmed cell death protein-1 (PD-1)-targeted immunotherapy for advanced hepatocellular carcinoma in real world. Onco Targets Ther. 2020;13:143–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mocan T, et al. Programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: prognostic and therapeutic perspectives. Clin Transl Oncol. 2019;21(6):702–12.

    Article  CAS  PubMed  Google Scholar 

  31. Liao H, et al. Expression of programmed cell death-ligands in hepatocellular carcinoma: correlation with immune microenvironment and survival outcomes. Front Oncol. 2019;9:883.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jung HI, et al. Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res Treat. 2017;49(1):246–54.

    Article  CAS  PubMed  Google Scholar 

  33. Yu J, et al. PD-L1 monoclonal antibody-decorated nanoliposomes loaded with paclitaxel and P-gp transport inhibitor for the synergistic chemotherapy against multidrug resistant gastric cancers. Nanoscale Res Lett. 2020;15(1):59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV. Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets. 2003;3(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Patel NR, et al. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm. 2011;416(1):296–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen D, et al. Adjudin-loaded redox-sensitive paclitaxel-prodrug micelles for overcoming multidrug resistance with efficient targeted Colon cancer therapy. Drug Deliv. 2020;27(1):1094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farooq MA, et al. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes. Colloids Surf B Biointerfaces. 2021;199:111523.

    Article  CAS  PubMed  Google Scholar 

  38. Hu Y, et al. Synergistic inhibition of drug-resistant colon cancer growth with PI3K/mTOR dual inhibitor BEZ235 and nano-emulsioned paclitaxel via reducing multidrug resistance and promoting apoptosis. Int J Nanomedicine. 2021;16:2173–86.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

All sources of funding were supported by the Medical and Health Project of Suzhou High-tech district (2018Z006).

Author information

Authors and Affiliations

Authors

Contributions

Mingjia Gu and Fang Yin: conceptualization, methodology, investigation, writing — original draft. Yuening Qin and Yali Tian: methodology, data curation; formal analysis, validation; Xinjie Xiu and Hanjing Shen: software; supervision, visualization. Jiebin Zhu: conceptualization, writing — review and editing, supervision, project administration. All persons mentioned above have made substantial contributions to the work in the manuscript.

Corresponding author

Correspondence to Jiebin Zhu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors whose names appear on the submission approved the version to be published.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, M., Yin, F., Qin, Y. et al. Synergistic antitumor efficacy of PD-1-conjugated PTX- and ZSQ-loaded nanoliposomes against multidrug-resistant liver cancers. Drug Deliv. and Transl. Res. 12, 2550–2560 (2022). https://doi.org/10.1007/s13346-021-01106-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01106-1

Keywords

Navigation