Skip to main content

Advertisement

Log in

Tobramycin-loaded complexes to prevent and disrupt Pseudomonas aeruginosa biofilms

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Carbohydrate-based materials are increasingly investigated for a range of applications spanning from healthcare to advanced functional materials. Synthetic glycopolymers are particularly attractive as they possess low toxicity and immunogenicity and can be used as multivalent ligands to target sugar-binding proteins (lectins). Here, we utilised RAFT polymerisation to synthesize two families of novel diblock copolymers consisting of a glycopolymers block containing either mannopyranose or galactopyranose pendant units, which was elongated with sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS) to generate a polyanionic block. The latter enabled complexation of cationic aminoglycoside antibiotic tobramycin through electrostatic interactions (loading efficiency in the 0.5–6.3 wt% range, depending on the copolymer). The resulting drug vectors were characterized by dynamic light scattering, zeta-potential, and transmission electron microscopy. Tobramycin-loaded complexes were tested for their ability to prevent clustering or disrupt biofilm of the Pseudomonas aeruginosa Gram-negative bacterium responsible for a large proportion of nosocomial infection, especially in immunocompromised patients. P. aeruginosa possesses two specific tetrameric carbohydrate-binding adhesins, LecA (PA-IL, galactose/N-acetyl-D-galactosamine-binding) and LecB (PA-IIL, fucose/mannose-binding), and the cell-associated and extracellular adhesin CdrA (Psl/mannose-binding) thus ideally suited for targeted drug delivery using sugar-decorated tobramycin-loaded complexes here developed. Both aliphatic and aromatic linkers were utilised to link the sugar pendant units to the polyacrylamide polymer backbone to assess the effect of the nature of such linkers on bactericidal/bacteriostatic properties of the complexes. Results showed that tobramycin-loaded complexes efficiently suppressed (40 to 60% of inhibition) in vitro biofilm formation in PAO1-L P. aeruginosa and that preferential targeting of PAO1-L biofilm can be achieved using mannosylated glycopolymer-b-AMPSm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors.

References

  1. Ma Z, Zhu XX. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. J Maters Chemistry B. 2019;7:1361–78.

    Article  CAS  Google Scholar 

  2. Spain SG, Cameron NR. A spoonful of sugar: the application of glycopolymers in therapeutics. Polym Chem. 2011;2:60–8.

    Article  CAS  Google Scholar 

  3. Ghazarian H, Idoni B, Oppenheimer SB. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 2011;113:236–47.

    Article  CAS  PubMed  Google Scholar 

  4. Sharon N, Lis H. Lectins as cell recognition molecules. Science. 1989;246:227–34.

    Article  CAS  PubMed  Google Scholar 

  5. Sharon N, Lis H. Lectins. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry (Second Edition). Waltham: Academic Press; 2013. p. 701–5.

    Chapter  Google Scholar 

  6. Sharon N, Lis H. Carbohydrates in cell recognition. Sci Am. 1993;268:82–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bertozzi CR, Kiessling LL. Chemical glycobiology. Science. 2001;291:2357–64.

    Article  CAS  PubMed  Google Scholar 

  8. Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discovery. 2021;20:217–43.

    Article  CAS  PubMed  Google Scholar 

  9. Kussrow A, Kaltgrad E, Wolfenden ML, Cloninger MJ, Finn MG, Bornhop DJ. Measurement of monovalent and polyvalent carbohydrate-lectin binding by back-scattering interferometry. Anal Chem. 2009;81:4889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee RT, Lee YC. Affinity enhancement by multivalent lectin–carbohydrate interaction. Glycoconj J. 2000;17:543–51.

    Article  CAS  PubMed  Google Scholar 

  11. Rini JM, Leffler H. Chapter 13 - Carbohydrate Recognition and Signaling. In: Bradshaw RA, Dennis EA, editors. Handbook of Cell Signaling (Second Edition). San Diego: Academic Press; 2010. p. 85–91.

    Chapter  Google Scholar 

  12. Lundquist JJ, Toone EJ. The Cluster Glycoside Effect. Chem Rev. 2002;102:555–78.

    Article  CAS  PubMed  Google Scholar 

  13. Lis H, Sharon N. Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem Rev. 1998;98:637–74.

    Article  CAS  PubMed  Google Scholar 

  14. Lee YC, Lee RT. Carbohydrate-Protein Interactions: Basis of Glycobiology. Acc Chem Res. 1995;28:321–7.

    Article  CAS  Google Scholar 

  15. Wang S, Dupin L, Noël M, Carroux CJ, Renaud L, Géhin T, Meyer A, Souteyrand E, Vasseur JJ, Vergoten G, Chevolot Y, Morvan F, Vidal S. Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands. Chem – A European J. 2016;22:11785–11794.

  16. Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger K-E. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology. 2005;151:1313–23.

    Article  CAS  PubMed  Google Scholar 

  17. Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D, Wozniak DJ, Parsek MR. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat Commun. 2019;10:2183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Diggle SP, Stacey RE, Dodd C, Cámara M, Williams P, Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol. 2006;8:1095–104.

    Article  CAS  PubMed  Google Scholar 

  19. Palmioli A, Sperandeo P, Polissi A, Airoldi C. Targeting Bacterial Biofilm: A New LecA Multivalent Ligand with Inhibitory Activity. ChemBioChem. 2019;20:2911–5.

    Article  CAS  PubMed  Google Scholar 

  20. E. Limqueco, D. Passos Da Silva, C. Reichhardt, F.-Y. Su, D. Das, J. Chen, S. Srinivasan, A. Convertine, S.J. Skerrett, M.R. Parsek, P.S. Stayton, D.M. Ratner, Mannose Conjugated Polymer Targeting P. aeruginosa Biofilms, ACS Infect Dis, 6 (2020) 2866–2871.

  21. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol. 2010;75:827–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. Reichhardt, C. Wong, D. Passos da Silva, D.J. Wozniak, M.R. Parsek, CdrA Interactions within the Pseudomonas aeruginosa Biofilm Matrix Safeguard It from Proteolysis and Promote Cellular Packing, mBio, 9 (2018).

  23. Raman G, Avendano EE, Chan J, Merchant S, Puzniak L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2018;7:79.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kaier K, Heister T, Götting T, Wolkewitz M, Mutters NT. Measuring the in-hospital costs of Pseudomonas aeruginosa pneumonia: methodology and results from a German teaching hospital. BMC Infect Dis. 2019;19:1028.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bhagirath AY, Li Y, Somayajula D, Dadashi M, Badr S, Duan K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med. 2016;16:174–174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res. 2010;10:441–51.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ciofu O, Tolker-Nielsen T. Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents—How P. aeruginosa Can Escape Antibiotics. Front in Microbiol. 2019;10.

  28. Grishin AV, Krivozubov MS, Karyagina AS, Gintsburg AL. Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials. Acta Naturae. 2015;7:29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Magennis EP, Francini N, Mastrotto F, Catania R, Redhead M, Fernandez-Trillo F, Bradshaw D, Churchley D, Winzer K, Alexander C, Mantovani G. Polymers for binding of the gram-positive oral pathogen Streptococcus mutans. PLOS One 2017;12:e0180087.

  30. Boukerb AM, Rousset A, Galanos N, Méar J-B, Thépaut M, Grandjean T, Gillon E, Cecioni S, Abderrahmen C, Faure K, Redelberger D, Kipnis E, Dessein R, Havet S, Darblade B, Matthews SE, de Bentzmann S, Guéry B, Cournoyer B, Imberty A, Vidal S. Antiadhesive Properties of Glycoclusters against Pseudomonas aeruginosa Lung Infection. J Med Chem. 2014;57:10275–89.

    Article  CAS  PubMed  Google Scholar 

  31. Kadam RU, Bergmann M, Hurley M, Garg D, Cacciarini M, Swiderska MA, Nativi C, Sattler M, Smyth AR, Williams P, Cámara M, Stocker A, Darbre T, Reymond J-L. A Glycopeptide Dendrimer Inhibitor of the Galactose-Specific Lectin LecA and of Pseudomonas aeruginosa Biofilms. Angew Chem Int Ed. 2011;50:10631–5.

    Article  CAS  Google Scholar 

  32. Johansson EMV, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels K-M, Diggle SP, Cámara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger K-E, Darbre T, Reymond J-L. Inhibition and Dispersion of Pseudomonas aeruginosa Biofilms by Glycopeptide Dendrimers Targeting the Fucose-Specific Lectin LecB. Chem Biol. 2008;15:1249–57.

    Article  CAS  PubMed  Google Scholar 

  33. Ting SRS, Chen G, Stenzel MH. Synthesis of glycopolymers and their multivalent recognitions with lectins. Polym Chem. 2010;1:1392–412.

    Article  CAS  Google Scholar 

  34. Bernard J, Hao X, Davis TP, Barner-Kowollik C, Stenzel MH. Synthesis of Various Glycopolymer Architectures via RAFT Polymerization: From Block Copolymers to Stars. Biomacromol. 2006;7:232–8.

    Article  CAS  Google Scholar 

  35. Kiessling LL, Grim JC. Glycopolymer probes of signal transduction. Chem Soc Rev. 2013;42:4476–91.

    Article  CAS  PubMed  Google Scholar 

  36. Hasegawa T, Kondoh S, Matsuura K, Kobayashi K. Rigid Helical Poly(glycosyl phenyl isocyanide)s: Synthesis, Conformational Analysis, and Recognition by Lectins. Macromolecules. 1999;32:6595–603.

    Article  CAS  Google Scholar 

  37. Wilkins LE, Badi N, Du Prez F, Gibson MI. Double-Modified Glycopolymers from Thiolactones to Modulate Lectin Selectivity and Affinity. ACS Macro Lett. 2018;7:1498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Richards S-J, Jones MW, Hunaban M, Haddleton DM, Gibson MI. Probing Bacterial-Toxin Inhibition with Synthetic Glycopolymers Prepared by Tandem Post-Polymerization Modification: Role of Linker Length and Carbohydrate Density. Angew Chem Int Ed. 2012;51:7812–6.

    Article  CAS  Google Scholar 

  39. Kadam RU, Garg D, Schwartz J, Visini R, Sattler M, Stocker A, Darbre T, Reymond J-L. CH−π “T-Shape” Interaction with Histidine Explains Binding of Aromatic Galactosides to Pseudomonas aeruginosa Lectin LecA. ACS Chem Biol. 2013;8:1925–30.

    Article  CAS  PubMed  Google Scholar 

  40. Perrier S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules. 2017;50:7433–47.

    Article  CAS  Google Scholar 

  41. Moad G, Rizzardo E, Thang SH. Radical addition–fragmentation chemistry in polymer synthesis. Polymer. 2008;49:1079–131.

    Article  CAS  Google Scholar 

  42. Mantero M, Gramegna A, Pizzamiglio G, D’Adda A, Tarsia P, Blasi F. Once daily aerosolised tobramycin in adult patients with cystic fibrosis in the management of Pseudomonas aeruginosa chronic infection. Multidisciplinary Respiratory Medicine. 2017;12:2.

    Article  PubMed  PubMed Central  Google Scholar 

  43. VanDrisse CM, Lipsh-Sokolik R, Khersonsky O, Fleishman SJ, Newman DK. Computationally designed pyocyanin demethylase acts synergistically with tobramycin to kill recalcitrant Pseudomonas aeruginosa biofilms. Proc National Acad Sci. 2011;11:8e2022012118.

  44. Mastrotto F, Salmaso S, Lee YL, Alexander C, Caliceti P, Mantovani G. pH-responsive poly(4-hydroxybenzoyl methacrylates) – design and engineering of intelligent drug delivery nanovectors. Polym Chem. 2013;4:4375–85.

    Article  CAS  Google Scholar 

  45. Mastrotto F, Salmaso S, Alexander C, Mantovani G, Caliceti P. Novel pH-responsive nanovectors for controlled release of ionisable drugs. Journal of Materials Chemistry B. 2013;1:5335–46.

    Article  CAS  PubMed  Google Scholar 

  46. Mastrotto F, Breen AF, Sicilia G, Murdan S, Johnstone AD, Marsh GE, Grainger-Boultby C, Russell NA, Alexander C, Mantovani G. One-pot RAFT and fast polymersomes assembly: a ‘beeline’ from monomers to drug-loaded nanovectors. Polym Chem. 2016;7:6714–24.

    Article  CAS  Google Scholar 

  47. Nieto-Orellana A, Di Antonio M, Conte C, Falcone FH, Bosquillon C, Childerhouse N, Mantovani G, Stolnik S. Effect of polymer topology on non-covalent polymer–protein complexation: miktoarm versus linear mPEG-poly(glutamic acid) copolymers. Polym Chem. 2017;8:2210–20.

    Article  CAS  Google Scholar 

  48. Nieto-Orellana A, Coghlan D, Rothery M, Falcone FH, Bosquillon C, Childerhouse N, Mantovani G, Stolnik S. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery. Int J Pharm. 2018;540:78–88.

    Article  CAS  PubMed  Google Scholar 

  49. Nieto-Orellana A, Li H, Rosiere R, Wauthoz N, Williams H, Monteiro CJ, Bosquillon C, Childerhouse N, Keegan G, Coghlan D, Mantovani G, Stolnik S. Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. J Control Release. 2019;316:250–62.

    Article  CAS  PubMed  Google Scholar 

  50. Obata M, Shimizu M, Ohta T, Matsushige A, Iwai K, Hirohara S, Tanihara M. Synthesis, characterization and cellular internalization of poly(2-hydroxyethyl methacrylate) bearing α-d-mannopyranose. Polym Chem. 2011;2:651–8.

    Article  CAS  Google Scholar 

  51. Petch JE, Gurnani P, Yilmaz G, Mastrotto F, Alexander C, Heeb S, Cámara M, Mantovani G. Combining Inducible Lectin Expression and Magnetic Glyconanoparticles for the Selective Isolation of Bacteria from Mixed Populations. ACS Appl Mater Interfaces. 2021;13:19230–43.

    Article  CAS  PubMed  Google Scholar 

  52. Catania R, Mastrotto F, Moore CJ, Bosquillon C, Falcone FH, Huett A, Mantovani G,  Stolnik S. Study on significance of receptor targeting in killing of intracellular bacteria with membrane-impermeable antibiotics. Adv. Therap. 2021;2100168. https://doi.org/10.1002/adtp.202100168.

  53. Luisa Martinez-Pomares FM, Mantovani G. SULFATED GLYCOPOLYMERS, in: T.U.o. Nottingham (Ed.), 2017.

  54. Garofalo M, Bellato F, Magliocca S, Malfanti A, Kuryk L, Rinner B, Negro S, Salmaso S, Caliceti P, Mastrotto F. Polymer Coated Oncolytic Adenovirus to Selectively Target Hepatocellular Carcinoma Cells. Pharmaceutics. 2021;13:949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chennamaneni NK, Kumar AB, Barcenas M, Spáčil Z, Scott CR, Tureček F, Gelb MH. Improved Reagents for Newborn Screening of Mucopolysaccharidosis Types I, II, and VI by Tandem Mass Spectrometry. Anal Chem. 2014;86:4508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gody G, Maschmeyer T, Zetterlund PB, Perrier S. Pushing the Limit of the RAFT Process: Multiblock Copolymers by One-Pot Rapid Multiple Chain Extensions at Full Monomer Conversion. Macromolecules. 2014;47:3451–60.

    Article  CAS  Google Scholar 

  57. Fields R. [38] The rapid determination of amino groups with TNBS, in: Methods in Enzymology, Academic Press. 1972;464–468.

  58. Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods. 2014;105:134–40.

    Article  CAS  PubMed  Google Scholar 

  59. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C. Critical review on biofilm methods. Crit Rev Microbiol. 2017;43:313–51.

    Article  CAS  PubMed  Google Scholar 

  60. Fletcher M. The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can J Microbiol. 1977;23:1–6.

    Article  Google Scholar 

  61. Jurcisek JA, Dickson AC, Bruggeman ME, Bakaletz LO. In vitro biofilm formation in an 8-well chamber slide. J Vis Exp. 2011;2481.

  62. Beaudoin T, Stone TA, Glibowicka M, Adams C, Yau Y, Ahmadi S, Bear CE, Grasemann H, Waters V, Deber CM. Activity of a novel antimicrobial peptide against Pseudomonas aeruginosa biofilms. Sci Rep. 2018;8:14728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kuhaudomlarp S, Gillon E, Varrot A, Imberty A LecA (PA-IL): A Galactose-Binding Lectin from Pseudomonas aeruginosa. Methods in molecular biol (Clifton, N.J.). 2020;2132:257–266.

  64. Sommer R, Wagner S, Rox K, Varrot A, Hauck D, Wamhoff E-C, Schreiber J, Ryckmans T, Brunner T, Rademacher C, Hartmann RW, Brönstrup M, Imberty A, Titz A. Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J Am Chem Soc. 2018;140:2537–45.

    Article  CAS  PubMed  Google Scholar 

  65. Wagner S, Hauck D, Hoffmann M, Sommer R, Joachim I, Müller R, Imberty A, Varrot A, Titz A. Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging. Angew Chem Int Ed. 2017;56:16559–64.

    Article  CAS  Google Scholar 

  66. Imberty A, Wimmerová M, Mitchell EP, Gilboa-Garber N. Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. Microbes infect. 2004;6:221–228.

  67. Sabin C, Mitchell EP, Pokorná M, Gautier C, Utille JP, Wimmerová M, Imberty A. Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: thermodynamics data correlated with X-ray structures. FEBS Lett. 2006;580:982–7.

    Article  CAS  PubMed  Google Scholar 

  68. Pranantyo D, Xu LQ, Hou Z, Kang E-T, Chan-Park MB. Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial α-polylysine. Polym Chem. 2017;8:3364–73.

    Article  CAS  Google Scholar 

  69. Vardanyan RS, Hruby VJ. 32 - Antibiotics. In: Vardanyan RS, Hruby VJ, editors. Synthesis of Essential Drugs. Amsterdam: Elsevier; 2006. p. 425–98.

    Chapter  Google Scholar 

  70. Messiaen A-S, Forier K, Nelis H, Braeckmans K, Coenye T. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms. PLoS ONE. 2013;8:e79220–e79220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hill M, Cunningham RN, Hathout RM, Johnston C, Hardy JG, Migaud ME. Formulation of Antimicrobial Tobramycin Loaded PLGA Nanoparticles via Complexation with AOT. Journal of Functional Biomaterials. 2019;10:26.

    Article  CAS  PubMed Central  Google Scholar 

  72. Sans-Serramitjana E, Jorba M, Fusté E, Pedraz JL, Vinuesa T, Viñas M. Free and Nanoencapsulated Tobramycin: Effects on Planktonic and Biofilm Forms of Pseudomonas. Microorganisms. 2017;5:35.

    Article  PubMed Central  CAS  Google Scholar 

  73. Ho D-K, De Rossi C, Loretz B, Murgia X, Lehr C-M. Itaconic Acid Increases the Efficacy of Tobramycin against Pseudomonas aeruginosa Biofilms. Pharmaceutics. 2020;12:691.

    Article  CAS  PubMed Central  Google Scholar 

  74. Alkhzem AH, Woodman TJ, Blagbrough IS. Individual pK (a) Values of Tobramycin, Kanamycin B, Amikacin, Sisomicin, and Netilmicin Determined by Multinuclear NMR Spectroscopy, ACS. Omega. 2020;5:21094–103.

    Article  CAS  Google Scholar 

  75. Habeeb AFSA. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966;14:328–36.

    Article  CAS  PubMed  Google Scholar 

  76. Velino C, Carella F, Adamiano A, Sanguinetti M, Vitali A, Catalucci D, Bugli F, Iafisco M. Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Front Bioeng Biotechnol. 2019;7.

  77. Hofemeier P, Sznitman J. Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay. J Appl Physiol. 2015;118:1375–85.

    Article  PubMed  Google Scholar 

  78. Thorn CR, Carvalho-Wodarz CdS, Horstmann JC, Lehr C-M, Prestidge CA, Thomas N. Tobramycin Liquid Crystal Nanoparticles Eradicate Cystic Fibrosis-Related Pseudomonas aeruginosa Biofilms. Small 2021;17:2100531.

  79. da Silva Medeiros T, Pinto EC, Cabral LM, de Sousa VP. Tobramycin: A review of detectors used in analytical approaches for drug substance, its impurities and in pharmaceutical formulation. Microchemical J. 2021;160:105658.

  80. Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1. 2005;Unit-1B.1.

  81. Shephard J, McQuillan AJ, Bremer PJ. Mechanisms of Cation Exchange by Pseudomonas aeruginosa PAO1 and PAO1 wbpL, a Strain with a Truncated Lipopolysaccharide. Appl Environ Microbiol. 2008;74:6980–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gottenbos B, Van der Mei HC, Busscher HJ, Grijpma DW, Feijen J. Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J Mater Sci - Mater Med. 1999;10:853–5.

    Article  CAS  PubMed  Google Scholar 

  83. Tré-Hardy M, Nagant C, El Manssouri N, Vanderbist F, Traore H, Vaneechoutte M, Dehaye J-P. Efficacy of the combination of tobramycin and a macrolide in an in vitro Pseudomonas aeruginosa mature biofilm model. Antimicrob Agents Chemother. 2010;54:4409–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Rees VE, Bulitta JB, Oliver A, Nation RL, Landersdorfer CB. Evaluation of Tobramycin and Ciprofloxacin as a Synergistic Combination Against Hypermutable Pseudomonas Aeruginosa Strains via Mechanism-Based Modelling. Pharmaceutics. 2019;11:470.

    Article  CAS  PubMed Central  Google Scholar 

  85. Heilesen AM, Permin H, Koch C, Høiby N. Treatment of chronic pseudomonas aeruginosa infection in cystic fibrosis patients with ceftazidime and tobramycin. Scand J Infect Dis. 1983;15:271–6.

    Article  CAS  PubMed  Google Scholar 

  86. Ratjen F, Brockhaus F, Angyalosi G. Aminoglycoside therapy against Pseudomonas aeruginosa in cystic fibrosis: a review. Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society. 2009;8:361–9.

    Article  CAS  Google Scholar 

  87. Mildner R, Menzel H. Hydrophobic Spacers Enhance the Helicity and Lectin Binding of Synthetic, pH-Responsive Glycopolypeptides. Biomacromol. 2014;15:4528–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Andrea Pagetta for his assistance with confocal microscopy.

Funding

This research was funded by PRIDJ (grant no. MAST_SID17_01, CUP C93C17002300005); MR, SR and MC are funded by the National Biofilms Innovation Centre (NBIC) which is an Innovation and Knowledge Centre funded by the Biotechnology and Biological Sciences Research Council, InnovateUK and Hartree Centre [Award Number BB/R012415/1].

Author information

Authors and Affiliations

Authors

Contributions

DF, PG and GY and FB performed synthesis of monomers and polymers and characterized materials and complexes, DF SR and MR carried out all the biological assays. FB and GA produced fluorescently labelled glycopolymers. FMo, FS and FM performed the biofilm confocal experiments. PC and SS advised on the project. MC supervised all the biological assays. FM and GM equally contributed to the design of the material, the conceptualization of the project, the supervision off all the experimental plan, secured funding and led the writing of the manuscript. All authors have given approval to the final version of the manuscript. Correspondence to Giuseppe Mantovani & Francesca Mastrotto.

Corresponding authors

Correspondence to Giuseppe Mantovani or Francesca Mastrotto.

Ethics declarations

Ethics approval and consent to participate

not applicable.

Consent for publication

All authors approve for publication.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7888 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boffoli, D., Bellato, F., Avancini, G. et al. Tobramycin-loaded complexes to prevent and disrupt Pseudomonas aeruginosa biofilms. Drug Deliv. and Transl. Res. 12, 1788–1810 (2022). https://doi.org/10.1007/s13346-021-01085-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01085-3

Keywords

Navigation