Shi H, Kwok RTK, Liu J, Xing B, Tang BZ, Liu B. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J Am Chem Soc. 2012;134:17972. https://doi.org/10.1021/ja3064588.
CAS
Article
PubMed
Google Scholar
Rizvi SFA, Mu S, Wang Y, Li S, Zhang H. Fluorescent RGD-based pro-apoptotic peptide conjugates as mitochondria-targeting probes for enhanced anticancer activities. Biomed Pharmacother. 2020;127: 110179. https://doi.org/10.1016/j.biopha.2020.110179.
CAS
Article
PubMed
Google Scholar
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745. https://doi.org/10.1007/s00018-019-03351-7.
CAS
Article
PubMed
Google Scholar
Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604. https://doi.org/10.1038/nrc2353.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005;201:1089. https://doi.org/10.1084/jem.20041896.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007;67:5064. https://doi.org/10.1158/0008-5472.can-07-0912.
CAS
Article
PubMed
Google Scholar
Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967. https://doi.org/10.1038/nature04483.
CAS
Article
PubMed
Google Scholar
Ellert-Miklaszewska A, Poleszak K, Pasierbinska M, Kaminska B. Integrin signaling in glioma pathogenesis: from biology to therapy. Int J Mol Sci. 2020;21:888. https://doi.org/10.3390/ijms21030888.
CAS
Article
PubMed Central
Google Scholar
Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: high potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev. 2018;129:37. https://doi.org/10.1016/j.addr.2018.01.020.
CAS
Article
PubMed
Google Scholar
Ganguly KK, Pal S, Moulik S, Chatterjee A. Integrins and metastasis. Cell Adh Migr. 2013;7:251. https://doi.org/10.4161/cam.23840.
Article
PubMed
PubMed Central
Google Scholar
Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 2012;9:2961. https://doi.org/10.1021/mp3002733.
CAS
Article
PubMed
Google Scholar
Sheldrake HM, Patterson LH. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem. 2014;57:6301. https://doi.org/10.1021/jm5000547.
CAS
Article
PubMed
Google Scholar
Park EJ, Myint PK, Ito A, Appiah MG, Darkwah S, Kawamoto E, Shimaoka M. Integrin-ligand interactions in inflammation, cancer, and metabolic disease: insights into the multifaceted roles of an emerging ligand irisin. Frontiers in Cell and Developmental Biology. 2020;8: 588066. https://doi.org/10.3389/fcell.2020.588066.
Article
PubMed
PubMed Central
Google Scholar
Yeung KY, Dickinson A, Donoghue JF, Polekhina G, White SJ, Grammatopoulos DK, McKenzie M, Johns TG, St John JC. The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathol Commun. 2014;2:1. https://doi.org/10.1186/2051-5960-2-1.
Article
PubMed
PubMed Central
Google Scholar
Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget. 2017; 8:86947. https://doi.org/10.18632/oncotarget.20372
Wan J, Guo AA, Chowdhury I, Guo S, Hibbert J, Wang G, Liu M. TRPM7 induces mechanistic target of Rap1b through the downregulation of miR-28-5p in glioma proliferation and invasion. Front Oncol. 2019;9:1413. https://doi.org/10.3389/fonc.2019.01413.
Article
PubMed
PubMed Central
Google Scholar
Mas-Moruno C, Rechenmacher F, Kessler H. Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem. 2010;10:753. https://doi.org/10.2174/187152010794728639.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ji S, Czerwinski A, Zhou Y, Shao G, Valenzuela F, Sowiński P, Chauhan S, Pennington M, Liu S. 99mTc-Galacto-RGD2: a novel 99mTc-labeled cyclic RGD peptide dimer useful for tumor imaging. Mol Pharm. 2013;10:3304. https://doi.org/10.1021/mp400085d.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tornesello AL, Buonaguro L, Tornesello ML, Buonaguro FM. New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules. 2017;22:1282. https://doi.org/10.3390/molecules22081282.
CAS
Article
PubMed Central
Google Scholar
Capello A, Krenning EP, Bernard BF, Breeman WA, van Hagen MP, de Jong M. Increased cell death after therapy with an Arg-Gly-Asp-linked somatostatin analog. J Nucl Med. 2004;45:1716.
CAS
PubMed
Google Scholar
Hofland LJ, Capello A, Krenning EP, de Jong M, van Hagen MP. Induction of apoptosis with hybrids of Arg-Gly-Asp molecules and peptides and antimitotic effects of hybrids of cytostatic drugs and peptides. J Nucl Med. 2005;46:191.
Google Scholar
Yan Y, Chen K, Yang M, Sun X, Liu S, Chen X. A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for prostate cancer imaging. Amino Acids. 2011;41:439. https://doi.org/10.1007/s00726-010-0762-5.
CAS
Article
PubMed
Google Scholar
Liu Z, Huang J, Dong C, Cui L, Jin X, Jia B, Zhu Z, Li F, Wang F. 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol Pharm. 2012;9:1409. https://doi.org/10.1021/mp200661t.
CAS
Article
PubMed
Google Scholar
Lucente E, Liu H, Liu Y, Hu X, Lacivita E, Leopoldo M, Cheng Z. Novel 64Cu labeled RGD2-BBN heterotrimers for PET imaging of prostate cancer. Bioconjug Chem. 2018;29:1595. https://doi.org/10.1021/acs.bioconjchem.8b00113.
CAS
Article
PubMed
Google Scholar
Mao B, Liu C, Zheng W, Li X, Ge R, Shen H, Guo X, Lian Q, Shen X, Li C. Cyclic cRGDfk peptide and Chlorin e6 functionalized silk fibroin nanoparticles for targeted drug delivery and photodynamic therapy. Biomaterials. 2018;161:306. https://doi.org/10.1016/j.biomaterials.2018.01.045.
CAS
Article
PubMed
Google Scholar
Goyal R, Jerath G, Chandrasekharan A, Christian Y, Kumar TRS, Ramakrishnan V. Molecular hybridization combining tumor homing and penetrating peptide domains for cellular targeting. Drug Deliv Transl Res. 2021. https://doi.org/10.1007/s13346-021-01035-z.
Article
PubMed
Google Scholar
Nie Z, Luo N, Liu J, Zeng X, Zhang Y, Su D. Multi-mode biodegradable tumour-microenvironment sensitive nanoparticles for targeted breast cancer imaging. Nanoscale Res Lett. 2020;15:81. https://doi.org/10.1186/s11671-020-03309-w.
CAS
Article
PubMed
PubMed Central
Google Scholar
Katyal P, Meleties M, Montclare JK. Self-assembled protein- and peptide-based nanomaterials. ACS Biomater Sci Eng. 2019;5:4132. https://doi.org/10.1021/acsbiomaterials.9b00408.
CAS
Article
PubMed
Google Scholar
Sun L, Fan Z, Wang Y, Huang Y, Schmidt M, Zhang M. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Soft Matter. 2015;11:3822. https://doi.org/10.1039/c5sm00533g.
CAS
Article
PubMed
Google Scholar
Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z. Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano. 2015;9:5223. https://doi.org/10.1021/acsnano.5b00640.
CAS
Article
PubMed
Google Scholar
Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X. Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconjug Chem. 2005;16:1433. https://doi.org/10.1021/bc0501698.
CAS
Article
PubMed
PubMed Central
Google Scholar
Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc. 1998;120:7987. https://doi.org/10.1021/ja980745t.
CAS
Article
Google Scholar
Gaonkar RH, Baishya R, Paul B, Dewanjee S, Ganguly S, Debnath MC, Ganguly S. Development of a peptide-based bifunctional chelator conjugated to a cytotoxic drug for the treatment of melanotic melanoma. MedChemComm. 2018;9:812. https://doi.org/10.1039/c7md00638a.
CAS
Article
PubMed
PubMed Central
Google Scholar
Song C, Wang Y, Rosi NL. Peptide-directed synthesis and assembly of hollow spherical CoPt nanoparticle superstructures. Angew Chem Int Ed. 2013;52:3993. https://doi.org/10.1002/anie.201209910.
CAS
Article
Google Scholar
Yang P-P, Zhang K, He P-P, Fan Y, Gao XJ, Gao X, Chen Z-M, Hou D-Y, Li Y, Yi Y, Cheng D-B, Zhang J-P, Shi L, Zhang X-Z, Wang L, Wang H. A biomimetic platelet based on assembling peptides initiates artificial coagulation. Sci Adv. 2020;6:4107. https://doi.org/10.1126/sciadv.aaz4107.
CAS
Article
Google Scholar
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: a review with perspective from molecular imaging modalities. Eur J Med Chem. 2021;221: 113538. https://doi.org/10.1016/j.ejmech.2021.113538.
CAS
Article
PubMed
Google Scholar
Lopez J, Tait SWG. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015;112:957. https://doi.org/10.1038/bjc.2015.85.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci. 2019;10:6035. https://doi.org/10.1039/c9sc01652j.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Sun Q, Huang Z, Huang L, Xiao Y. Immobilizable fluorescent probes for monitoring the mitochondria microenvironment: a next step from the classic. Journal of Materials Chemistry B. 2019;7:2749. https://doi.org/10.1039/c9tb00043g.
CAS
Article
PubMed
Google Scholar
Dufort S, Sancey L, Hurbin A, Foillard S, Boturyn D, Dumy P, Coll J-L. Targeted delivery of a proapoptotic peptide to tumors in vivo. J Drug Target. 2011;19:582. https://doi.org/10.3109/1061186x.2010.542245.
CAS
Article
PubMed
Google Scholar
Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019;48:2967. https://doi.org/10.1039/c8cs00805a.
CAS
Article
PubMed
Google Scholar
Ayo A, Laakkonen P. Peptide-based strategies for targeted tumor treatment and imaging. Pharmaceutics. 2021;13:481. https://doi.org/10.3390/pharmaceutics13040481.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao Z-Q, Yang Y, Fang W, Liu S. Comparison of biological properties of (99m)Tc-labeled cyclic RGD peptide trimer and dimer useful as SPECT radiotracers for tumor imaging. Nucl Med Biol. 2016;43:661. https://doi.org/10.1016/j.nucmedbio.2016.02.006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv Drug Deliv Rev. 2017;113:157. https://doi.org/10.1016/j.addr.2016.08.001.
CAS
Article
PubMed
Google Scholar
Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomed. 2014;9:711. https://doi.org/10.2147/ijn.s53717.
Article
Google Scholar
Dong C, Yang S, Shi J, Zhao H, Zhong L, Liu Z, Jia B, Wang F. SPECT/NIRF Dual modality imaging for detection of intraperitoneal colon tumor with an avidin/biotin pretargeting system. Sci Rep. 2016;6:18905. https://doi.org/10.1038/srep18905.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rangger C, Helbok A, Sosabowski J, Kremser C, Koehler G, Prassl R, Andreae F, Virgolini IJ, von Guggenberg E, Decristoforo C. Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int J Nanomed. 2013;8:4659. https://doi.org/10.2147/ijn.s51927.
Article
Google Scholar
Shi J, Kim YS, Chakraborty S, Zhou Y, Wang F, Liu S. Impact of bifunctional chelators on biological properties of 111In-labeled cyclic peptide RGD dimers. Amino Acids. 2011;41:1059. https://doi.org/10.1007/s00726-009-0439-0.
CAS
Article
PubMed
Google Scholar