Skip to main content

Hybridization of tumor homing and mitochondria-targeting peptide domains to design novel dual-imaging self-assembled peptide nanoparticles for theranostic applications

Abstract

A novel hybridized dual-targeting peptide-based nanoprobe was successfully designed by using the cyclic heptapeptide. This peptide has Arg-Gly-Asp-Lys-Leu-Ala-Lys sequence, in which the RGD homing motif and KALK mitochondria-targeting motif were linked via amide bond. The designed peptide probe was further modified through covalent linkage to induce dual-imaging functionality, and self-assembled to form spherical nanoparticles. The novel Cy5.5-SAPD-99mTc nanoparticles were tested for in vitro cytotoxicity, cellular uptake, and apoptosis-inducing functionalities. The cellular internalization, enhanced cytotoxicity and selective receptor binding capabilities against U87MG cells, excellent dual-imaging potential, improved apoptosis-inducing feature by damaging mitochondria, and in vivo preclinical investigations suggested that our newly designed novel hybridized peptide-based dual-imaging nanoparticles may serve as an admirable theranostic probe to treat brain tumor glioblastoma multiforme.

Graphical abstract

This study describes the development of dual-targeting self-assembled peptide nanoparticles followed by modifications using NIRF dye and radiolabeled with 99mTc for dual-imaging and enhanced therapeutic efficacy against brain tumor.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. Shi H, Kwok RTK, Liu J, Xing B, Tang BZ, Liu B. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J Am Chem Soc. 2012;134:17972. https://doi.org/10.1021/ja3064588.

    CAS  Article  PubMed  Google Scholar 

  2. Rizvi SFA, Mu S, Wang Y, Li S, Zhang H. Fluorescent RGD-based pro-apoptotic peptide conjugates as mitochondria-targeting probes for enhanced anticancer activities. Biomed Pharmacother. 2020;127: 110179. https://doi.org/10.1016/j.biopha.2020.110179.

    CAS  Article  PubMed  Google Scholar 

  3. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745. https://doi.org/10.1007/s00018-019-03351-7.

    CAS  Article  PubMed  Google Scholar 

  4. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604. https://doi.org/10.1038/nrc2353.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005;201:1089. https://doi.org/10.1084/jem.20041896.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007;67:5064. https://doi.org/10.1158/0008-5472.can-07-0912.

    CAS  Article  PubMed  Google Scholar 

  7. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967. https://doi.org/10.1038/nature04483.

    CAS  Article  PubMed  Google Scholar 

  8. Ellert-Miklaszewska A, Poleszak K, Pasierbinska M, Kaminska B. Integrin signaling in glioma pathogenesis: from biology to therapy. Int J Mol Sci. 2020;21:888. https://doi.org/10.3390/ijms21030888.

    CAS  Article  PubMed Central  Google Scholar 

  9. Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: high potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev. 2018;129:37. https://doi.org/10.1016/j.addr.2018.01.020.

    CAS  Article  PubMed  Google Scholar 

  10. Ganguly KK, Pal S, Moulik S, Chatterjee A. Integrins and metastasis. Cell Adh Migr. 2013;7:251. https://doi.org/10.4161/cam.23840.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 2012;9:2961. https://doi.org/10.1021/mp3002733.

    CAS  Article  PubMed  Google Scholar 

  12. Sheldrake HM, Patterson LH. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem. 2014;57:6301. https://doi.org/10.1021/jm5000547.

    CAS  Article  PubMed  Google Scholar 

  13. Park EJ, Myint PK, Ito A, Appiah MG, Darkwah S, Kawamoto E, Shimaoka M. Integrin-ligand interactions in inflammation, cancer, and metabolic disease: insights into the multifaceted roles of an emerging ligand irisin. Frontiers in Cell and Developmental Biology. 2020;8: 588066. https://doi.org/10.3389/fcell.2020.588066.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yeung KY, Dickinson A, Donoghue JF, Polekhina G, White SJ, Grammatopoulos DK, McKenzie M, Johns TG, St John JC. The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathol Commun. 2014;2:1. https://doi.org/10.1186/2051-5960-2-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget. 2017; 8:86947. https://doi.org/10.18632/oncotarget.20372

  16. Wan J, Guo AA, Chowdhury I, Guo S, Hibbert J, Wang G, Liu M. TRPM7 induces mechanistic target of Rap1b through the downregulation of miR-28-5p in glioma proliferation and invasion. Front Oncol. 2019;9:1413. https://doi.org/10.3389/fonc.2019.01413.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mas-Moruno C, Rechenmacher F, Kessler H. Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem. 2010;10:753. https://doi.org/10.2174/187152010794728639.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Ji S, Czerwinski A, Zhou Y, Shao G, Valenzuela F, Sowiński P, Chauhan S, Pennington M, Liu S. 99mTc-Galacto-RGD2: a novel 99mTc-labeled cyclic RGD peptide dimer useful for tumor imaging. Mol Pharm. 2013;10:3304. https://doi.org/10.1021/mp400085d.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Tornesello AL, Buonaguro L, Tornesello ML, Buonaguro FM. New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules. 2017;22:1282. https://doi.org/10.3390/molecules22081282.

    CAS  Article  PubMed Central  Google Scholar 

  20. Capello A, Krenning EP, Bernard BF, Breeman WA, van Hagen MP, de Jong M. Increased cell death after therapy with an Arg-Gly-Asp-linked somatostatin analog. J Nucl Med. 2004;45:1716.

    CAS  PubMed  Google Scholar 

  21. Hofland LJ, Capello A, Krenning EP, de Jong M, van Hagen MP. Induction of apoptosis with hybrids of Arg-Gly-Asp molecules and peptides and antimitotic effects of hybrids of cytostatic drugs and peptides. J Nucl Med. 2005;46:191.

    Google Scholar 

  22. Yan Y, Chen K, Yang M, Sun X, Liu S, Chen X. A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for prostate cancer imaging. Amino Acids. 2011;41:439. https://doi.org/10.1007/s00726-010-0762-5.

    CAS  Article  PubMed  Google Scholar 

  23. Liu Z, Huang J, Dong C, Cui L, Jin X, Jia B, Zhu Z, Li F, Wang F. 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol Pharm. 2012;9:1409. https://doi.org/10.1021/mp200661t.

    CAS  Article  PubMed  Google Scholar 

  24. Lucente E, Liu H, Liu Y, Hu X, Lacivita E, Leopoldo M, Cheng Z. Novel 64Cu labeled RGD2-BBN heterotrimers for PET imaging of prostate cancer. Bioconjug Chem. 2018;29:1595. https://doi.org/10.1021/acs.bioconjchem.8b00113.

    CAS  Article  PubMed  Google Scholar 

  25. Mao B, Liu C, Zheng W, Li X, Ge R, Shen H, Guo X, Lian Q, Shen X, Li C. Cyclic cRGDfk peptide and Chlorin e6 functionalized silk fibroin nanoparticles for targeted drug delivery and photodynamic therapy. Biomaterials. 2018;161:306. https://doi.org/10.1016/j.biomaterials.2018.01.045.

    CAS  Article  PubMed  Google Scholar 

  26. Goyal R, Jerath G, Chandrasekharan A, Christian Y, Kumar TRS, Ramakrishnan V. Molecular hybridization combining tumor homing and penetrating peptide domains for cellular targeting. Drug Deliv Transl Res. 2021. https://doi.org/10.1007/s13346-021-01035-z.

    Article  PubMed  Google Scholar 

  27. Nie Z, Luo N, Liu J, Zeng X, Zhang Y, Su D. Multi-mode biodegradable tumour-microenvironment sensitive nanoparticles for targeted breast cancer imaging. Nanoscale Res Lett. 2020;15:81. https://doi.org/10.1186/s11671-020-03309-w.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Katyal P, Meleties M, Montclare JK. Self-assembled protein- and peptide-based nanomaterials. ACS Biomater Sci Eng. 2019;5:4132. https://doi.org/10.1021/acsbiomaterials.9b00408.

    CAS  Article  PubMed  Google Scholar 

  29. Sun L, Fan Z, Wang Y, Huang Y, Schmidt M, Zhang M. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Soft Matter. 2015;11:3822. https://doi.org/10.1039/c5sm00533g.

    CAS  Article  PubMed  Google Scholar 

  30. Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z. Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano. 2015;9:5223. https://doi.org/10.1021/acsnano.5b00640.

    CAS  Article  PubMed  Google Scholar 

  31. Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X. Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconjug Chem. 2005;16:1433. https://doi.org/10.1021/bc0501698.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc. 1998;120:7987. https://doi.org/10.1021/ja980745t.

    CAS  Article  Google Scholar 

  33. Gaonkar RH, Baishya R, Paul B, Dewanjee S, Ganguly S, Debnath MC, Ganguly S. Development of a peptide-based bifunctional chelator conjugated to a cytotoxic drug for the treatment of melanotic melanoma. MedChemComm. 2018;9:812. https://doi.org/10.1039/c7md00638a.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Song C, Wang Y, Rosi NL. Peptide-directed synthesis and assembly of hollow spherical CoPt nanoparticle superstructures. Angew Chem Int Ed. 2013;52:3993. https://doi.org/10.1002/anie.201209910.

    CAS  Article  Google Scholar 

  35. Yang P-P, Zhang K, He P-P, Fan Y, Gao XJ, Gao X, Chen Z-M, Hou D-Y, Li Y, Yi Y, Cheng D-B, Zhang J-P, Shi L, Zhang X-Z, Wang L, Wang H. A biomimetic platelet based on assembling peptides initiates artificial coagulation. Sci Adv. 2020;6:4107. https://doi.org/10.1126/sciadv.aaz4107.

    CAS  Article  Google Scholar 

  36. Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: a review with perspective from molecular imaging modalities. Eur J Med Chem. 2021;221: 113538. https://doi.org/10.1016/j.ejmech.2021.113538.

    CAS  Article  PubMed  Google Scholar 

  37. Lopez J, Tait SWG. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015;112:957. https://doi.org/10.1038/bjc.2015.85.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci. 2019;10:6035. https://doi.org/10.1039/c9sc01652j.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Sun Q, Huang Z, Huang L, Xiao Y. Immobilizable fluorescent probes for monitoring the mitochondria microenvironment: a next step from the classic. Journal of Materials Chemistry B. 2019;7:2749. https://doi.org/10.1039/c9tb00043g.

    CAS  Article  PubMed  Google Scholar 

  40. Dufort S, Sancey L, Hurbin A, Foillard S, Boturyn D, Dumy P, Coll J-L. Targeted delivery of a proapoptotic peptide to tumors in vivo. J Drug Target. 2011;19:582. https://doi.org/10.3109/1061186x.2010.542245.

    CAS  Article  PubMed  Google Scholar 

  41. Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019;48:2967. https://doi.org/10.1039/c8cs00805a.

    CAS  Article  PubMed  Google Scholar 

  42. Ayo A, Laakkonen P. Peptide-based strategies for targeted tumor treatment and imaging. Pharmaceutics. 2021;13:481. https://doi.org/10.3390/pharmaceutics13040481.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao Z-Q, Yang Y, Fang W, Liu S. Comparison of biological properties of (99m)Tc-labeled cyclic RGD peptide trimer and dimer useful as SPECT radiotracers for tumor imaging. Nucl Med Biol. 2016;43:661. https://doi.org/10.1016/j.nucmedbio.2016.02.006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv Drug Deliv Rev. 2017;113:157. https://doi.org/10.1016/j.addr.2016.08.001.

    CAS  Article  PubMed  Google Scholar 

  45. Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomed. 2014;9:711. https://doi.org/10.2147/ijn.s53717.

    Article  Google Scholar 

  46. Dong C, Yang S, Shi J, Zhao H, Zhong L, Liu Z, Jia B, Wang F. SPECT/NIRF Dual modality imaging for detection of intraperitoneal colon tumor with an avidin/biotin pretargeting system. Sci Rep. 2016;6:18905. https://doi.org/10.1038/srep18905.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Rangger C, Helbok A, Sosabowski J, Kremser C, Koehler G, Prassl R, Andreae F, Virgolini IJ, von Guggenberg E, Decristoforo C. Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int J Nanomed. 2013;8:4659. https://doi.org/10.2147/ijn.s51927.

    Article  Google Scholar 

  48. Shi J, Kim YS, Chakraborty S, Zhou Y, Wang F, Liu S. Impact of bifunctional chelators on biological properties of 111In-labeled cyclic peptide RGD dimers. Amino Acids. 2011;41:1059. https://doi.org/10.1007/s00726-009-0439-0.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are cordially thankful to the Director INMOL, and Dr. Munir Ahmad, INMOL, Lahore-Pakistan, for providing Hot-Lab facilities and access to SPECT/CT camera for animal studies.

Funding

This research work was financially supported by the National Natural Science Foundation of China (No. 21575055).

Author information

Authors and Affiliations

Authors

Contributions

S.F.A.R.: conceptualization; methodology; validation; investigation; writing—original draft. S.S.: formal analysis, visualization, resources. S.M.: validation, visualization. H.Z.: validation; project administration; writing—review and editing; supervision.

Corresponding author

Correspondence to Haixia Zhang.

Ethics declarations

Ethical approval

All animal studies performed in this study were in accordance with the compliance of the animal ethical committee of the National Institute of Health and National Regulation of China for Care and Use of Laboratory Animals (Lanzhou University, Gansu, China).

Consent to participate

Informed consent was obtained from the human participants of this study.

Consent for publication

Consent for publication was obtained from the participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 756 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizvi, S.F.A., Shahid, S., Mu, S. et al. Hybridization of tumor homing and mitochondria-targeting peptide domains to design novel dual-imaging self-assembled peptide nanoparticles for theranostic applications. Drug Deliv. and Transl. Res. 12, 1774–1785 (2022). https://doi.org/10.1007/s13346-021-01066-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01066-6

Keywords

  • Hybridized peptides
  • Dual-imaging
  • Mitochondria-targeting motif
  • Theranostic agent
  • Glioblastoma multiforme