Skip to main content

Advertisement

Log in

Nanomedicine-based combination of dexamethasone palmitate and MCL-1 siRNA for synergistic therapeutic efficacy against rheumatoid arthritis

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 28 May 2024

This article has been updated

Abstract

The main aim of this research was to design a MCL-1 siRNA and dexamethasone (DEX)-loaded folate modified poly(lactide-co-glycolide) (PLGA)-based polymeric micelles with an eventual goal to improve the therapeutic outcome in the rheumatoid arthritis (RA). Polymeric micelles encapsulating the MCL-1 siRNA and DEX was successfully developed and observed to be stable. Physicochemical characteristics such as particle size and particle morphology were ideal for the systemic administration. Folate-conjugated DEX/siRNA-loaded polymeric micelles (DS-FPM) significantly lowered the MCL-1 mRNA expression compared to either DEX/siRNA-loaded polymeric micelles (DS-PM) or free siRNA in Raw264.7 cells and macrophage cells suggesting the importance of targeted nanocarriers. Most importantly, DS-FPM exhibited a greatest decrease in the hind paw volume with lowest clinical score compared to any other treated group indicating a superior anti-inflammatory activity. DS-FPM showed significantly lower levels of the TNF-α and IL-1β compared to AIA model and free groups. The folate receptor (FR)-targeting property of DS-FPM has been demonstrated to be a promising delivery platform for the effective delivery of combination therapeutics (siRNA and DEX) toward the treatment of rheumatoid arthritis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data are made available with the article.

Change history

Abbreviations

DEX:

Dexamethasone

DS-FPM:

DEX/siRNA-loaded folate-conjugated polymeric micelles

DS-PM:

DEX/siRNA-loaded polymeric micelles

FR:

Folate receptors

References

  1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–61.

    Article  CAS  PubMed  Google Scholar 

  2. Bax M, Heemst JV, Huizinga TWJ, Toes REM. Genetics of rheumatoid arthritis: what have we learned? Immunogenetics. 2011;63:459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kourilovitch M, Galarza-Maldonado C, Ortiz-Prado E. Diagnosis and classification of rheumatoid arthritis. J Autoimmun. 2014;48:26–30.

    Article  PubMed  Google Scholar 

  4. Smolen JS, Aletaha D, Mcinnes IB. Rheumatoid arthritis. Lancet. 2016;388:2023–38.

    Article  CAS  PubMed  Google Scholar 

  5. Abbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH, Mohammadi H, et al. Strategies toward rheumatoid arthritis therapy: the old and the new. J Cell Physiol. 2019;234:10018–31.

    Article  CAS  PubMed  Google Scholar 

  6. Smolenand JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov. 2003;2:473–88.

    Article  Google Scholar 

  7. Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, Sullivan MC. 2015 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):1–26.

    Article  PubMed  Google Scholar 

  8. Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta. 2016;455:161–71.

    Article  CAS  PubMed  Google Scholar 

  9. Chu JG, Wang XJ, Bi HJ, Li LF, Ren MG, Wang JW. Dihydromyricetin relieves rheumatoid arthritis symptoms and suppresses expression of pro-inflammatory cytokines via the activation of Nrf2 pathway in rheumatoid arthritis model. Int Immunopharmacol. 2018;59:174–80.

    Article  CAS  PubMed  Google Scholar 

  10. Liu HT, Eksarko P, Temkin V, Haines GK, Perlman H, Koch AE, et al. Mcl-1 is essential for the survival of synovial fibroblasts in rheumatoid arthritis. J Immunol. 2005;175:8337–45.

    Article  CAS  PubMed  Google Scholar 

  11. Liu HT, Huang QQ, Shi B, Eksarko P, Temkin V, Pope RM. Regulation of mcl-1 expression in rheumatoid arthritis synovial macrophages. Arthritis Rheum. 2006;54:3174–81.

    Article  CAS  PubMed  Google Scholar 

  12. Leverson JD, Zhang H, Chen J, Tahir SK, Phillips DC, Xue J, et al. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis. 2015;6(1):e1590.

  13. Schiffelers RM, Xu J, Storm G, Woodle MC, Scaria PV. Effects of treatment with small interfering RNA on joint inflammation in mice with collagen-induced arthritis. Arthritis Rheum. 2005;52:1314–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):1–25.

    Google Scholar 

  15. Chen Y, Li B, Chen X, et al. A supramolecular co-delivery strategy for combined breast cancer treatment and metastasis prevention. Chin Chem Lett. 2020;31:1153–8.

    Article  CAS  Google Scholar 

  16. Sardh E, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380:549–58.

    Article  PubMed  Google Scholar 

  17. Bissell DM, et al. ENVISION a phase 3 study of safety and efficacy of givosiran an investigational RNAi therapeutic in acute hepatic porphyria patients. Hepatology. 2019;70:100A-101A.

    Google Scholar 

  18. De Paula Brandao PR, Titze-de-Almeida SS, Titze-de-Almeida R. Leading RNA interference therapeutics part 2: silencing delta-aminolevulinic acid synthase 1 with a focus on givosiran. Mol Diagn Ther. 2019;24:61–8.

    Article  Google Scholar 

  19. Agarwal S, et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid (siRNA) givosiran in patients with acute hepatic porphyria. Clin Pharmacol Ther. 2020;108:63–72.

    Article  CAS  PubMed  Google Scholar 

  20. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11:59–67.

    Article  CAS  PubMed  Google Scholar 

  21. Wei X, Wu JB, Zhao G, Galdamez J, Lele SM, Wang XY, et al. Development of a Janus kinase inhibitor prodrug for the treatment of rheumatoid arthritis. Mol Pharm. 2018;15:3456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei X, Li F, Zhao G, Chhonker YS, Averill C, Galdamez J, et al. Pharmacokinetic and biodistribution studies of HPMA copolymer conjugates in an aseptic implant loosening mouse model. Mol Pharm. 2017;14:1418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang YJ, Jia ZS, Yuan HJ, Dusad A, Ren K, Wei X, et al. The evaluation of therapeutic efficacy and safety profile of simvastatin prodrug micelles in a closed fracture mouse model. Pharm Res. 2016;33:1959–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J Control Release. 2017;258:226–53.

    Article  CAS  PubMed  Google Scholar 

  25. Ramasamy T, Munusamy S, Ruttala HB, Kim JO. Smart nanocarriers for the delivery of nucleic acid-based therapeutics: a comprehensive review. Biotechnol J. 2017;16(2):e1900408.

  26. Ruttala HB, Ramasamy T, Ruttala RRT, et al. Mitochondria-targeting multi-metallic ZnCuO nanoparticles and IR780 for efficient photodynamic and photothermal cancer treatments. J Mater Sci Technol. 2021;86:139–50.

    Article  CAS  Google Scholar 

  27. Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomed Nanotechnol Biol Med. 2016;12:1113–26.

    Article  CAS  Google Scholar 

  28. El-Shiekh RA, El-Mekkawy S, Mouneir SM, Hassan A, Abdel-Sattar E. Therapeutic potential of russelioside B as anti-arthritic agent in Freund’s adjuvant-induced arthritis in rats. J Ethnopharmacol. 2021;270:113779.

  29. Tong Z, Cheng L, Song J, Wang M, Yuan J, Li X, Gao H, Wu Z. Therapeutic effects of Caesalpinia minax Hance on complete Freund’s adjuvant (CFA)-induced arthritis and the anti-inflammatory activity of cassane diterpenes as main active components. J Ethnopharmacol. 2018;226:90–6.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng N, Lian B, Xu G, Liu X, Li X, Ji J. Development of a subcellular semi mechanism-based pharmacokinetic/pharmacodynamic model to characterize paclitaxel effects delivered by polymeric micelles. J Pharm Sci. 2019;108:725–31.

    Article  CAS  PubMed  Google Scholar 

  31. Emami J, Maghzi P, Hasanzadeh F, Sadeghi H, Mirian M, Rostami M. PLGA-PEG-RA-based polymeric micelles for tumor targeted delivery of irinotecan. Pharm Dev Technol. 2018;23:41–54.

    Article  CAS  PubMed  Google Scholar 

  32. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    CAS  PubMed  Google Scholar 

  33. Yuan F, Quan LD, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev. 2012;64:1205–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmei Li.

Ethics declarations

Ethics approval and consent to participate

All animal experiments were approved by the Animal Ethical Committee of the Yantaishan hospital, YanTai. Reporting was in compliance with Animal Research: Reporting In Vivo Experiments (ARRIVE 2.0) guidelines).

Consent for publication

Yes.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wei, S., Sun, Y. et al. Nanomedicine-based combination of dexamethasone palmitate and MCL-1 siRNA for synergistic therapeutic efficacy against rheumatoid arthritis. Drug Deliv. and Transl. Res. 11, 2520–2529 (2021). https://doi.org/10.1007/s13346-021-01037-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01037-x

Keywords

Navigation